2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

Term-Based Scheduling Languages and their Comparison in
View of the Expressivity

Pok-Son Kim, Arne Kutzner, and Taehoon Park
Kookmin University, Department of Mathematics, Seoul 136-702, Korea
{pskim,thpark }@kookmin.ac.kr
Seokyeong University, Department of E-Business, Seoul 136-704, Korea
kutzner@skuniv.ac.kr

Abstract

The logic-based scheduling languages RSV and RCPSV
may be used to represent and to solve a new general
class of resource-constrained project scheduling with vari-
ants. RSV and RCPSV syntactically represent schedul-
ing problems as descriptions (activity terms) being simi-
lar to concepts in a description logic. Though RSV and
RCPSV have a different syntax, they are equally expres-
sive. On the other hand, from a complexity point of
view RCPSV permits more compact representations than
RSV. We argue that the difference may be exponential.

1 Introduction

Ever since the introduction of the pioneer works of Kelly
[2Jand Wiest (1963) [7] very much has been reported for
the resource-constrained project scheduling problem [5],
[6], [1], but in the classical methods for representing this
NP-complete problem (for example, based on integer pro-
gramming) it is generally difficult to read the flow struc-
ture and the content of a scheduling problem. This mo-
tivated us to use a term language for representing and
solving scheduling problems. We have introduced a logic-
based language called RSV [3] which syntactically rep-
resents resource-constrained scheduling problems as de-
scriptions (activity terms) being similar to concepts in
a description logic which emerged from KL-ONE-based,
terminological knowledge representation systems of arti-
ficial intelligence [4]. The language RSV allows nested
expressions using operators pll, seq, and xor. It gen-
eralizes previous approaches to scheduling with variants
insofar as it permits xor not only of atomic activities
but also of arbitrary activity terms. A specific semantics
that assigns their set of active schedules to activity terms
shows correctness of a calculus normalizing activity terms
of RSV similar to propositional DNF-computation. The
use of semantic methods from description logics is the
key for understanding the meaning of compound activ-
ity terms. Characteristics of description logics are a term

language for concepts and other notions, a clean denota-
tional semantics, and specific calculi (like subsumption)
based on the semantics. Based on these characteristics
a diagram-based algorithm called Axrgy for solving the
RSV-problem could be described which uses a scan-line
principle to determine and resolve the occurring resource
conflicts.

An additional logic-based terminological language called
RCPSV which also may be used to model resource-
constrained scheduling problems with variants also allows
nested expressions using operators hnet and xor and cov-
ers activity-terms and semantics in a way best suited to
the specific time and resource constraints similar to that
of RSV. Based on the semantics a calculus is defined
which transforms an activity term into several separate
subterms so that for each subterm all optimal schedules
can be generated by using Agrsy - .
Though RSY and RCPSV have a different syntax,
we will show that they are equally expressive, i. e.
each RCPSV-expression can be represented as a RSV-
expression and vice versa. On the other hand, from
the viewpoint of a syntactical representation ability of
problems, RCPSV permits more compact representations
than RSV. We will present some scheduling examples for
which the running time for translating into RSV-term is
more expensive than translating into RCPSV -term.

2 The Scheduling Language RSV

The vocabulary of RSV consists of a set of ground activ-
ities {(¢,7(3),d(@))|i = 1,--- ,n(n € IN),r(¢) € R,d(i) €
IN} and 3 operators ‘seq’ ‘xor’ and ‘pll’ where R is a
finite set of resources. Each ground activity ¢ is atomic
and it is associated with a resource r(i) and an activity
time d(¢) needed for completing it.

The operators are used for constructing activity-terms
(nested expressions) and describing further constraints.
Activity-terms are given inductively as follows:

1. Each ground activity is an activity-term.

20

2. If ty,tq, -+ ,t; are activity-terms, then

(Seqt17t2a"' 7tk)7
(xorty,ta, - ,t),
(p11t17t27'” ’tk)

are activity-terms.

The interpretation function defined in RSV assigns to
every term ¢ some subset that consists of all active sched-
ules derived from ¢. Based on this semantics, a calculus
is defined which can transform each term ¢ into a seman-
tically equivalent, normalized term s. It follows from the
semantical equivalence of ¢ and s that a schedule which
is optimal for ¢ is optimal for s too and vice versa. But
a normalized term is structurally simpler, i.e. in s all
ronredundant reduced terms included in ¢ that represent
classical RCPS-problems (scheduling problems without
considering “OR” activities) and take partially different
paths but complete the same project are described sep-
arately. So, for every reduced term, schedules with the
minimal makespan can be computed using Arsy. Among
all these computed schedules, those that have the mini-
raal value correspond then to the optimal schedules for
the RSV-term t.

The
RCPSV

3 Scheduling Language

let T be a set of vertices (terms) and E
} (tlat2)7 (t37 t4)’) (tn—lat‘n)} CTxT aset of prece-
dence edges. Further let (T, E) be a directed acyclic graph
having no edge of type (t,t) for any t € T that we call
it scheduling network on T. If in (T, E) there exists no
isolated vertex t, (T, E) can be described exclusively only
through the specification of E, because T can be derived
from E (T = {t1,t2} U {t3,ta} U---U {tn—1,tn}). When
in (T, E) there is an isolated vertex t, we take a dummy
vertex 0 and form the pair (0, t) for each isolated vertex .
Then we add (0,¢) to E. So we get E'(D E) which T can
be derived from. So any scheduling network (T, E) can be
described exclusively only through the set of precedence
edges (E or E'). Based on this always existing simplifi-
cation possibility the scheduling language RCPSV is de-
fined as follows:

The vocabulary of RCPSV counsists of two disjoint sets
of symbols. These sets are:

e A finite set of ground activities {(0,eu,0)} U
{(Z,T‘(l),d(l))'Z 1:"‘ 7”(”’ € IN),T(’I:) € Ra d(l’) €
IN} where (0, eu,0) corresponds to a dummy ground
activity and R is a finite set of resources. Each
ground activity is atomic and is associated with a re-
source and an activity time needed for completing it.
Except for the unlimited available dummy resource

eu , each resource can be assigned to only one activ-
ity at a time (resource constraint). Activity splitting
is not allowed (nonpreemptive case).

o A set of two structural symbols (operators) ‘xor’ and
‘hnet’.

The activity-terms of RCPSV are given inductively as
follows :

1. Each ground activity is an activity-term.

2. If ty,tg,- - - , tx are activity-terms, then all terms

(xorty,ta,--- ,t)

and

hnetfletny = t1,--- ,ng = tg; (D11, 012), -+ - ,(lel,nﬂ)
are activity-terms where ny,--- ,ny are distinct con-
stant symbols (names) and {(n11,712), " - - , (11, 752)]
corresponds to a scheduling network on

{n1, - e} (= {t1, - St })-

The dummy ground activity (0, eu ,0) corresponds to the
above described dummy vertex. The operators ‘xor’ and
‘hnet’ are used for constructing activity-terms and have
the following meaning:

¢ ‘xor’: This operator can be used for specifying sev-
eral different alternative activity-terms. Eractly one
activity-term among alternatives must be selected
and executed.

‘hnet’: This operator specifies the arrange-
ment of activity-terms corresponding to the
given precedence relations and a scheduling
network. In term hmetletn; = t;,---,ng
ti; (n11,m12), -+, (nj1,n52)], the operator hnet
forces [(n11,m12),- - , (nj1,n2)] to specify a directed
acyclic graph with n;; # ny foreach i =1,---k for
the set of vertices {TL11,’I'L12} U---u {’I’Lkl,nkg}.

The model-theoretic semantics of RCPSV-activity-terms
is given by an interpretation Z which consists of the set
D (the domain of Z) and an interpretation function £ .
The set D consists of all active schedules derived from
activity-terms in RCPSV. The interpretation function
T assigns to every activity-term ¢ some subset of D that
consists of all active schedules derived from ¢. Based on
the semantics a calculus can be defined which transforms
an activity term into a normalized activity term consist-
ing of several separate reduced subterms so that for each
subterm all optimal schedules can be generated by using

Arsy (see [3]).

21

5
(=)

B R Sl Torll Dol b Sl g

1

Figure 2: A RCPSV -diagram based calculation

4 The Same, Powerful Expressiv-
ity of RSV and RCPSV

We will prove that each RCPSV-expression can be rep-
resented as a RSV-expression and vice versa. It is ob-
vious that any RSV-expression can be represented as a
RCPSV-expression. Before showing that any RCPSV-
expression can be also represented as a RSV-expression,
we first show that any active schedule o delivered by
Arsy for a RCPSV-term can be represented as a re-
duced RSV-term t(o).

To show this, we consider an example. We take the active
schedule ¢ = (D12, 6) of figure 2 derived from the follow-
ing RCPSV-activity-term (see figure 1) using Agsy.:

hnet[let1l =(1,q,2), 2 =(2,b,1), 3 =(3,qa,1),
4= (4767 1)75 = (5’673)a6 = (ﬁva: 2)77 = (7ad;1);
(1,4),(1,5),(2,6),(3,7),(5,7), (6, 7)]

With the aid of Arsy, a reduced RSV-term t(o) = t(o3)

representing o, where 5 corresponds to the number of all
recursive calls of the step 3 “Freezing” during calculating
o = (D12,6), can be constructed. After each ith call
of the step 3 “Freezing”, a part o; of the active sched-
ule ¢ = (D12,6) is obtained. For each o;(i = 1,---5),
a RSV-activity-term t(o;) representing o; and consisting
of all frozen activities can be formed so that ¢(c) repre-
senting o finally is obtained.

After the 1st call of the step “Freezing”, we get the dia-
gram oy = (D1,1) of figure 2. The RSV-expression t(o})
consists of the both frozen activities 1 and 2 (Only the
frozen activities are considered.). Since it is still unknown
whether the activities 1 and 2 will take successors, they
are combined by ‘seq’ and so we obtain seq 1 and seq2.
These activities are carried out parallel each other. So,
they are combined by ‘pll’ again and the following RSV-
expression finally can be obtained as t(o,):

(pll (seql),
(seq2))

For t(o2), it obviously holds t(o3) = t(o1). At the 3rd
call, the both activities 3 and 5 are frozen for which it
holds LE(3) = LE(5) = 2. For each activity k frozen at
the ith call, it holds that either k is a start-activity such
as the activities 1 and 2, i.e. in o; it holds LE(k) = 0 or in
o; there exists at least one frozen immediate predecessor
v of k with RE(v) = LE(k). For the both activities 3 and
5 frozen at the 3rd call, there exists such a frozen activity
1 with RE(1) = LE(3) = LE(5). First, the following
subactivity is constructed:

(pll (seq3),
(seq5))

(1)

Then this subactivity is added to (1) behind the activity
1. So, for t(o3) we get

(pll (seq1,

(seq2))

If, at the 3rd call, a further activity k with LE(k) = 0
had been frozen, & was combined by ‘seq’ and then seqk
was added to t(o2) as an argument of the operator ‘pll’
of (1). At the 4th call, the activity 6 is added and after
the last (5th) call we get the schedule o = (D12,6) and

(P11 (seq3),
(seq?))),

-the following RSV-expression t(o) representing o can be

constructed:
(pll (seq1, (pll (seq3,6),
(seq’5, (pl14,7)))),
(seq2))

The activities 6, 4, 7 have not been combined by ‘seq’ be-
cause they take no successor.

Lemma 4.1. For a network (X, P) of a given RCPSV -
expression, let o be any complete active schedule delivered
through Arsy and n be the number of recursive calls of

22

Figure 3: RCPS-problems

the step 3 “Freezing all definitely placed ground activities”
of Arsy during calculating 0. Furtherletoy,--- 0, =0
be the sequence of partial schedules delievered after every
call of the step 3 “Freezing’, where, for every o;, only all
frozen activities until the i-th call are considered. Then a
sequence t(oo),t(c1), - -t(on) of RSV-expressions repre-
senting 01,- -+ ,0, respectively can be constructed and so
t(on) exactly represents the schedule o.

Proof. It can be shown easily by induction on the term
t(o;) of the sequence t{ag),t(01), - -t(o,). At the exten-
sion of the activity £(o;) to the activity ¢(oy1) (see the
example described above), the semantics of the operators

‘plI’ and ‘seq’ forces the activities dy,ds,-- - ,dy, frozen
at the (i + 1)th call to have exactly the same schedule
time for carrying out just as in o;41. O

Theorem 4.1. For any RCPSV -activity-term s there
exist @ RSV-activity-term t with s* = ¢%.

Proof. For any RCPSV -activity-term s all nonredundant
active schedules can be derived by means of Agxsy. In
Lemma 4.1 we showed any active schedule derived from
s can be represented as a RSV-expression. Let 71,--- 7,
be all nonredundant active schedules derived from s and
t(r1),--- ,t(m) be all RSV-expressions representing these
schedules 71, - - - 7, respectively. For the RSV-expression

xor t(71), - ,t(Tn)
it obviously holds s = (xort(n),- -+ ,t(rs))%. o

It may be noticed that in theorem 4.1 the expression
(xort(m1),--- ,t(7s)) presumably can have an exponen-
tially larger space demand than the activity-term s.

We consider the RCPS-problem represented by (1) of fig-
ure 3. This problem can be represented by the RCPSV -
activity-term (2) in a compact form while as a RSV-
activity-term, first, for the problem all nonredundant ac-
tive schedules must be computed and then, with the aid
of the construction rule described above, a corresponding
RSV-expression such as (3) can be described.

(hnetllet1 = (1,a,1),2 =(2,q,2),3 =(3,),2)

4= (4d 10,3, 0.4, @10)

23

(xor (seq(l1,a,1),(pll(3,b,2), (seq(2,a,2),(4,d,1))),

(seq(2,a,2),(1,a,1), (P (3,b,2),(4,d,1)))) @
3

Obviously, any RCPS-problem can be translated into a
RCPSV- term in polynomial size. But we presume that
there are RCPS-problems which can be translated into
RSV-terms only in an exponential size. For example, (2)
of figure 3 presumably shows such a problem.

5 Summary

Though RSV and RCPSV have a different syntax,
we could show that they are equally expressive, i.e.
each RCPSV -expression can be represented as a RSV-
expression and vice versa but, from a complexity point
of view, RCPSV permits more compact representations
than RSY. We have presented some scheduling examples
for which the running time for translating into RSV-term
is more expensive than translating into RCPSV -term.

References

[1] P. Brucker, S. Knust, and O. Schoo, A. Thiele.
A Branch and Bound Algorithm for the Resource-
constrained Project Scheduling Problem. FEuropean
Journal of Operational Research, 107:272-288, 1998.

[2] J. E. Jr. Kelly. The Critical Path Method: Resource
Planning and Scheduling, Ch 21 in Industrial Schedul-
ing, Muth, J. F. AND Thompson, G. L. (eds.). Pren-
tice Hall, Englewood Cliffs, NJ, 1963.

[3] P. S. Kim and M. Schmidt-Schauf. A Term-Based
Approach to Project Scheduling. ICCS01, Lecture
Notes in Artificial Intelligence Series 2120, p. 304 ff.,
Springer-Verlag, 2001.

[4] M. Schmidt-Schauff and G. Smolka. Attributive Con-
cept Descriptions with Unions and Complements.
Technical Report, SEKI Report SR-88-21, FB Infor-
matik, Universitdt Kaiserslautern, D-6750, Germany,
1988.

[5] L. Schrage. Solving resource-constrained network
problems by implicit enumeration, preemptive case.
Operations Research, 20(3):668-677, 1972.

[6] J. P. Stinson, E. W. Davis, and B. M. Khu-
mawala. Multiple Resource-Constrained Schedul-
ing Using Branch and Bound. AIIE Transactions,
10(3):252-259, 1978.

[7] J. D. Wiest. The Scheduling of Large Projects with
Limited Resources. PhD thesis, Carnegie Institute of
Technology, 1963.

