2003 International Symposium on Advanced Intelligent Systems
September 25-28, 2003, Jeju, Korea

Generation of Emergent Game Character’s Behavior
with Evolution Engine

Jin-Hyuk Hong and Sung-Bae Cho

Dept. of Computer Science, Yonsei University
134 Sinchon-dong, Sudaemoon-ku
Seoul 120-749, Korea
{hjinh, sbcho}@cs.yonsei.ac.kr

Abstract - In recent years, various digital characters,
which are automatic and intelligent, are attempted with

the introduction of artificial intelligence or artificial life.

Since the style of a character’s behavior is usually
designed by a developer, the style is very static and
simple. So such a simple pattern of the character
_ cannot satisfy various users and easily makes them feel
tedious. A game should maintain various and complex
styles of a character’s behavior, but it is very difficult
for a developer to design various and complex
behaviors of it. In this paper, we adopt the genetic
algorithm to produce various and excellent behavior-
styles of a character especially focusing on Robocode
which is one of promising simulators for artificial
intelligence.

I. INTRODUCTION

With the development of video games, the interest on
intelligence for the game character is rapidly increased in
recent years [1]. The techniques for the game move to the
development of good intelligence, while they just focused
on the process of graphics in its early stage. Many players
prefer much higher level of intelligence, and the artificial
intelligence of a game gets to be one of crucial factors for
the success of the game [2].

Artificial intelligence controls the behavior of a
character or the environments to be more realistic and
attractive [3,4]. The research on the generation of
character’s behavior starts on robotics which controls the
behavior of a robot. Recently with the growth in computer
animations and various game industries, it also includes
the studies to control the behavior of an avatar or an
animation character [1]. While robotics focuses on the
automation and accuracy of a robot’s behavior, the
research of character’s behavior for the entertainment
considers the diversity, creativity and aesthetics of the
behavior as important.

Hence a digital character should not repeat the same
behavior, but have various and creative behaviors to

provide player with news and curiosity. In particular, game
character should act diverse behaviors for the various
environments and be designed not to be easily understood
by a player. However traditional character is designed by
human, so the behavior is not complex for a player to be
understood. In addition, when the game’s environment is
complex, the behavior becomes much more complex to be
designed. The traditional approaches are hard to develop
diverse and remarkable behaviors to fill up the player’s
requests [1,2,5].

In this paper, we focus on the generation of diverse and
good behaviors of a character. The genetic algorithm is
used for the purpose to create emergent behaviors by
combining primitive behaviors of a character.

II. RELATED WORKS
A. Behavior strategies of characters

Game player controls a virtual character to move and act
in the virtual environment. Since the time for calculating a
behavior should be short and the process should be
relatively easy at a game, the finite state machine is
commonly adopted to design the behavior of a game
character. The finite state machine is usually constructed
with 10 or fewer states. At each state the behavior of a
character is defined statically with simple operations to
process fast. As mentioned before, however, the style or
strategy of a character’s behavior is easily understood
because of its simplicity [2].

There are many other artificial intelligent techniques for
design of a character’s behavior, such as case-based
reasoning, decision tree, neural network, fuzzy logic, and
so on [1,4]. Since most of them are based on manual
design, they leave developer some difficulties to design the
behavior in every case. The manual design is apt to restrict
the diversity and creativity of a character. For the case of
neural network, it does not need to design the behavior
directly, but the inputs and outputs are explicitly defined so
as to hardly expect extra behaviors of a character. In a

698

game, extra behaviors of a character cause an interest to
the player, however it is hard to construct various and extra
styles of the behavior with these traditional approaches. In
order to solve these limitations, the genetic algorithm is
applied to some games but not to various kinds of the
computer games [5].

Artificial life is one of promising recent techniques for
the design of a character’s behavior [3,4]. It is a study of
systems which imitate the behavioral characteristics of a
living thing. It considers an ‘emergent behavior’, which is
the result of interactions among low-level of actions, as
important. Artificial life technique divides a huge Al
which decides a character’s behavior into a set of small
actions so as to generate a complex and whole behavior
with interactions between low-level of simple rules.
Usually it is called as ‘emergence’. Artificial life is a
useful technique to generate complex and diverse
behaviors of a character, even if it is based on primitive
actions. In this paper, we define primitive actions of a
character and combine them using the genetic algorithm to
generate various styles of a character’s behavior.

B. Robocode [7]

In order to demonstrate the proposed method, we adopt
Robocode which arouses an interest recently as battle
simulator for artificial intelligence. It is Java-based tank
battle simulator developed by IBM Alphaworks. A tank
programmed by user makes a move in the battle field and
evades the opponent’s attack and assualts it. As visualized
simulator, it is easy to observe the behavior of a character.
In addition, since it is currently on-line, it can be possible
to compare various other tanks that are programmed by the
others.

A Tank in battlefield should be survived from a battle
among the opponents. It gathers various information on
itself and the opponents, and decides its behavior with the
information. It is necessary to consider complex and
various factors to win a game and to execute the proper
strategy of a character’s behavior. Movement against the
opponents and the efficient usage of an energy should be
also considered, and the success of an attack leads to the
win. Since a user manually designs and programs a tank, it
acts accurately but is apt to have a simple behavior.

A tank starts a game with a limited energy, and it
consumes the energy by shooting bullets or bumping
somethings. If the energy becomes 0, the tank gets to be
destroyed. The energy can be increased as a compensation
when it hits the other tanks.

A tank consists of gun, radar, and body as shown in Fig.
1. Each part can operate independently. The gun fires a
bullet, and the radar scans opponents and obtains their

information, and the body is charge of movement. Each
part has various operating functions.
s —

Figure 1. Structure of Robocode's tank

A tank has a basic behavior for its main loop, and
additional behaviors for events which happen in some
predefined situations. Common events used for designing a
tank are ScannedRobotEvent (when radar scans a robot),
HitByBulletEvent (when the tank is hit by a bullet),
HitRobotEvent (when the tank collides with a robot),
HitWallEvent (when the tank bumps into a wall), and so
on. First, a tank acts its basic behavior, and when a specific
event occures, the tank changes its behavior corresponding
to the event.

III. EVOLVED STRATEGIES GENERATION
A. The genetic algorithm

The genetic algorithm is one of evolutionary
computations based on the evolution theory such as genetic
programming, evolutionary programming, and evolution
strategies, which applies in optimization and classification
problems [4,6]. There are some differences in the
representation of an individual and in the evolutionary
operations, but the fundamental principle and methods of
them are the same. In this paper, we generate the strategies
of a game character’s behavior using the genetic algorithm.

-

G
. et

Figure 2 Genetic algorithm

699

The genetic algorithm, suggested by John Holland in the
beginning of 1970s, is an optimization method imitating
the mechanism of nature’s evolution such as crossover,
mutation, and the survival of the fittest. Since it provides
an efficient search method based on a population, it applies
in many problems for optimization and classification.
Common procedure of genetic algorithm is as follows,
while it uses genetic operators as shown in Fig. 2.

« step 1: initialize the population

« step 2: evaluate each individual’s fitness of the

population

» step 3: generate new population in proportion to the

fitness of each individual

« step 4: execute genetic operators such as crossover and

mutation

« step 5: repeat steps 2~5 until the stop condition is

satisfied

The genetic algorithm is very efficient for general
problems and provides an optimization mechanism, so that
it applies to the optimization of gas pipe-line arrangement,
travel salesman problem, the behavior evolution of robots,
leaming neural network, and the optimization of a fuzzy
membership functions, and so on.

B. Encoding characters

The behavior of a tank is classified into move-strategy
(MS), shoot-strategy (SS), bullet-power-strategy (BPS),
radar-search-strategy (RSS), and target-select-strategy
(TSS), all of which are predefined in this paper. Each
strategy has various kinds of basic actions as shown in

Table 1, and Table 2 sets some examples for move-strategy.

The design of these basic actions is mostly simple for a
developer to understand and implement them. Even if they
are very simple for each, the composite usage of them
generates more various and complicated behaviors.

Table 1 Basic actions of a tank

MS SS BPS RSS TSS
distance- weak-
random constant based always-turn robot
sllir:;l: linear light-fast | target-focus i‘:f;::s];
rapdom corpplex- powerful target- defense
linear linear -slow scope-focus
simple medium nearest-
circular robot
random hit-rate-
circular based
anti-
gravity
stop
Bullet-
avoid

A tank basically moves on a behavior defined in main
loop. When an event happens, the specific behavior for the
event is generated. In this paper, we design a behavior for
main loop and behaviors for each event. Especially, we
consider typical 4 events mentioned previously. Each
behavior has 5 kinds of strategies as shown in Table 1 to
be decided. The style of these behaviors is generated by
the genetic algorithm which uses the basic actions and
searches the optimal combination of them. There are 7200
(=5*8*3*5*3*4) possible combinations of the basic
actions. It is not quite large to search, but the complexity
increases rapidly when the number of the basic actions
increases.

Table 2 Example-codes of move-strategy

Move-

strategy Code

switch(Math.random()*2){

case 0: setAhead(Math.random()*500);
break;
setBack(Math.random()*500);
break; }
switch(Math.random()*2) {
setTumRight(Math.random()*90);
break;
setTurnLeft(Math.random()*90);
break; }

execute();

case 1:

Random
case 0:

case 1:

ahead(100);

Linear setBack(100);

setTurnRight(5000);
setMaxVelocity(5);
ahead(5000);

Circular

IV. EXPERIMENTS
A. Experimental environment

We verify the proposed system with several tanks
provided by Robocode such as wall-Robot, corner-Robot,
and fire-Robot. Wall-robot maintains itself following a
wall, and corer-Robot stays at a corner of a battle field,
and fire-Robot stays a place and fires a bullet when it
scanned an opponent. In addition, we evolve a robot
against BigBear programmed by Danie! Johnson, which is
one of the champs of Robocode Rumble in 2002 [7].

The parameters of the experiment are set as shown in
Table 3. For genetic operation, 1 point crossover, bit-flip
mutation, and elitism are used. Roulette wheel selection is
adopted as selection mechanism. The fitness of each
individual is measured by the result of 3 battles among the
target tanks.

Table 3 Parameters of experimental environment

Genetic operator Value
Population size 25
Maximum generation 100
Selection rate 0.6
Crossover rate 0.6
Mutation rate 0.1

B. Results of evolved strategies

In this paper, we focus on the generation of various and
emergent behaviors using the genetic algorithm. The
behavior should be also good enough to compete with the
target tanks.

Table 4 shows the result of the experiment. Evolving a
tank against corner-Robot is not difficult as you see,
because corner-Robot has a simple behavior pattern. Fire-
Robot and wall-Robot have a more complex pattern, so the
system searches fewer solutions within the same
generations. Because the system did not find any solution
against BigBear in 50 generations, we have tried 150
generations to search solutions and it generates a few of
good strategies to defeat BigBear. The values of the right
two rows of the table are different, which indicates that
good strategies are different corresponding to target tanks.

Table 4 Results of the system against target tanks

Number of | post frequent behavior
Target discovered -
tank | behaviors (150 | Main Scanned-
generations) loop RobotEvent
Corner 23 000310 001003
Fire 13 000200 012413
Wall 7 400302 412223
BigBear 04) 000313 011112
Table 5 Emergent strategies against wall-Robot
Emergent Value of
stra tg Content affecting
8y behavior
Rambo Firing at random 012312
Master shot Tracing the opponent 412422
accurately and shooting
Bumpmg Not shooting, only bumping 401022
king the opponent
Avoiding the opponent’s
Runaway attack until the opponent 210003
becomes exhausted
Upset Moving the battle filed
dri X) 012112
river incomprehensibly

701

The proposed system has generated many interesting
strategies. There are many different ways to defeat wall-
Robot, and Table 5 shows some of the outstanding
emergent strategies beating wall-Robot. Specially bumping
king and runaway strategies are not under our expectation.
The last row indicates the critical values for the behaviors.

V. CONCLUSIONS

Artificial life and the genetic algorithm are useful to
generate various styles of a character’s behavior. A game
character should keep many strategies of its movement, but
it is a difficult problem for a developer to design diverse
behaviors. In this paper, we have tried to generate many
interesting strategies of a game character using the genetic
algorithm. Especially applying to Robocode, we have
demonstrated its utility to design various behavior styles.

We used a set of predefined actions and combined them
to generate the high level of behavior. As a future work,
we will use the genetic programming, which is more
flexible and representative than the genetic algorithm, to
generate the structure of behavior and for better movement
to calculate the proper value of many parameters such as
distance, degree, power, etc.

ACKNOWLEDGEMENTS

This paper was supported in part from Korea Culture &
Contents Agency.

REFERENCES

{11 J. Laird and M. Lent, “Human-level Al's killer
application: Interactive computer games,” AJ
Magazine, vol. 22, no. 2, pp.15-26, 2001.

[2] S. woodcock, “Game AI: the state of the industry,”
Game Developer Magazine, pp. 28-35, August 1999.

[3] C. Langton, C. Taylor, J. Farmer, and S. Rasmussen,
“Artificial life 2,” in Sante Fe Institute Studies in the
Sciences of Complexity, Addison-Wesley, pp. 511-547,
1992.

[4] M. Mitchell and S. Forrest, “Genetic algorithms and
artificial life,” Artificial Life, vol. 1, no. 3, pp. 267-289,
1994.

[5] D. Johnson and J. Wiles, “Computer games with

intelligence,” IEEE Int. Fuzzy Systems Conf., pp.

1355-1358, 2001.

K. Chellapilla and D. Fogel, “Evolution, neural

networks, games, and intelligence,” Proceedings of

the IEEE, vol. 87, no. 9, pp. 1471-1496, 1999.

[7] S. Li, Rock 'em, sock ‘em robocoe!, 2002. http://www-
106.ibm.com/developerworks/java/library/j-robocode

(6]

