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Abstract— A motion-based background subtraction method
without geometric computation is proposed, allowing that the
camera is moving parallel to the ground plane with uniform
velocity. The proposed method subtracts the background region
from a given image by evaluating the difference between cal-
culated and model flows. This approach is insensitive to small
errors of calculated optical flows. Furthermore, in order to tackle
the significant errors, a strategy for incorporating a set of optical
#lows calculated over different frame intervals is presented. An
experiment with two real image sequences, in which a static box
or a moving toy car appears, to evaluate the performance in terms
of accuracy under varying thresholds using a receiver operating
characteristic (ROC) curve. The ROC curves show, in the best
case, the figure-ground segmentation is done at 17.8% in false
positive fraction (FPF) and 71.3% in true positive fraction (TPF)
for the static-object scene and also at 14.8% in FPF and 72.4%
in TPF for the moving-object scene, regardless if the calculated
.ptical flows contain significant errors of calculation.

[. INTRODUCTION

Most of the figure-background segmentation methods are
nased on geometric computation such as the recovery of
5D structure and motion from optical flow [1]-[4] and the
sstimation of parametric flow models [5][6]. The geometric
;omputation based on optical flow is, however, likely to be
tragile due to its sensitivity to noise [7](8] and to be time-
;onsuming with the objective of real-time processing. Also,
inost of the existing methods make the limited assumption that
the scene is observed with a fixed camera, i.e., the background
regions are static with respect to time.

For robust and fast figure-background segmentation in
the dynamic scene, a motion-based background subtraction
method is proposed, allowing the camera to move parallel
1c the ground plane with uniform velocity. Instead of com-
puting geometric constraints, the proposed method subtracts
:he background region from a given image by evaluating the
difference between calculated and model flows. The model
flow is estimated from training data which are optical flows
:aused by relative motion of the background. The evaluation
process provides a “confidence value” ranging from 0 to 1
tc the corresponding fiow, based on the squared Mahalanobis
distance. The more the confidence value is close to 1, the
more the corresponding pixel is considered to be included in
the background of the scene. This process is completed with
_bout one-tenth of the video-frame rate due to its simplicity.

Furthermore, in order to improve the robustness against incor-
rectly calculated flows, the final confidence value is robustly
estimated by taking the median among the confidence values
calculated over different frame intervals.

An experiment is made with two real image sequences, in
which a static box or a moving car appears, to evaluate the
performance in terms of accuracy under varying thresholds
using a receiver operating characteristic (ROC) curve. The
ROC curves show, in the best cases, the proposed method
can segment the foreground objects out from the background
region at 17.8% in false positive fraction (FPF) and 71.3%
in true positive fraction (TPF) for the static-object scene and
also at 14.8% in FPF and 72.4% in TPF for the moving-object
scene.

Sec.II presents a method for estimating the model flow of
the background. Sec.III proposes a figure-ground segmentation
method based on optical flow. Sec.IV shows a strategy for
improving robustness to significant erroneous optical flows.
Sec.V demonstrates experimental performance of the proposed
method.

II. ESTIMATION OF BACKGROUND FLOW MODEL

Assume, throughout this paper, that a camera is moving
parallel to the ground plane with uniform velocity In this case,
the relative motion of the ground plane produces an optical
flow field which is constant with respect to time in a video
sequence, i.e., each flow of the ground plane is constant in
direction and length over time. The proposed method uses this
constant flow field as a model of the background scene.

This constancy, however, actually does not hold in the real
world, because optical flows calculated from a real video
sequence are normally corrupted by noise, as shown in Fig.1.
The plots in Fig.1 (a) and Fig.1 (b) show the optical flows of
the ground plane at different two pixels over time, respectively.
Each flow distribution is ideally represented at a point, but this
is not the case for the video sequence. In addition, Fig.1 shows
that the two distributions are correlated in a different manner
and have different variances, i.c., the optical flows are not
independent and identically distributed (i.i.d) over the whole
image. This property of the noise makes it difficult to construct
the model flow, because the simple i.i.d assumption is not able
to be imposed on all of the pixels. Thus the model flow is
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Fig. 1. Distributions of optical flows calculated from a real video sequence.

estimated from sample optical flows obtained by measuring the
ground plane scene where there does not exist any foreground
objects.

Let usg )(t) be the i-th calculated optical flow of the ground
plane in the image at time ¢. For the i-th pixel, the mean of

time-series optical flows ugg) t),t=1,2,...,n,
1 n
a? = = (), M
t=1

is used as the model flow. If the time series of the optical flows
contains some outliers, the least median of squares (LMedS)
estimator [9] is used to remove the outliers before estimating
the mean. In addition to the mean, the covariance matrix is
estimated as
n
LS w0 - a0 -7, @

n—lt=1

Vi=

which is used in evaluating the difference between the model
and calculated flows, as will be explained in Sec.HL

II1. FIGURE-GROUND SEGMENTATION BASED ON OPTICAL
FLOW

A figure-ground segmentation method is proposed by in-
troducing a “confidence value” which is used to segment
foreground objects out from the ground plane. The confidence
value is defined using the squared Mahalanobis distance based
on the inverse covariance matrix V! for pixel . The use of
the inverse covariance matrices is able to design a decision
boundary for the figure-ground segmentation from the training
optical flows with different correlations and variances at each
pixel.

Let u;,2 = 1,2,...,m, be the calculated optical flow at
pixel i in the image. The difference between the calculated
flow u; and the model flow ﬁgg) is evaluated by the squared
Mahalanobis distance

di = (u; — B9V (u; - a?). (3)

Using the squared Mahalanobis distance in eq. (3), the confi-
dence value c; at pixel i is defined as

ci = e 4. 4)

Note that the confidence value is a real number in [0,1].
The more the confidence value is close to 1, the more the
corresponding pixel is considered as the background in the

®

Fig. 2. Optical flow fields for two different time intervals

scene. Then, pixel 7 is detected as a foreground region if the
confidence value c; satisfies

k2

c<e 7, &)

where k is a pre-defined threshold. If the distribution of the
difference, u; —ﬁl(-g ), is approximately modeled by a Gaussian
distribution in two dimensions, it is a reasonable choice to set
k = 2.5 or k = 3.0 from a probabilistic point of view.

IV. IMPROVING ROBUSTNESS BY INCORPORATING
CONFIDENCES OVER DIFFERENT TIME INTERVALS

The figure-ground segmentation based on the confidence
value in eq. (4) is insensitive to small errors of calculated
optical flows, whereas other methods based on 3D information
from optical flow are more sensitive because such a small error
sometimes causes an extremely erroneous estimate of depth.

However, any segmentation methods based on optical flow,
including the proposed method, can not handle significant
errors of calculated optical flows without additional informa-
tion about the environment. Fig.2 (a) shows an example of
such significant errors; in spite of the fact that there are not
independently moving objects against the ground plane inside
the circle depicted in Fig.2 (a), the corresponding region seems
to be independently moving. This situation frequently arises
due to brightness changes over time, and it is difficult to model
these significant errors, sometimes called “outliers”, by an
appropriate probability distribution.

A simple way to prevent this situation from arising may
be to calculate optical flow at a different interval of frame.
Fig.2 (b) shows an example of the optical flow calculated at
a different frame interval from that of Fig.2 (a). This time
interval can remove the outlier region in the image despite
using the same optical flow algorithm. Thus, a strategy for
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incorporating a collection of optical flows calculated over
different frame intervals is presented.

Let u;(¢, At) be the optical flow at pixel ¢ calculated from
two images at time ¢ and ¢ + At, and let ¢;(¢, At) be the cor-
responding confidence value defined by eq. (4). By changing
time interval At, a collection of optical flows u,(t, At), At =
~1,-2,...,—T, and a collection of the corresponding con-
fidence values, ¢;(t, At), At = —1,-2,..., T, are obtained
for pixel ¢ at time ¢. In the setting of experiments, T = 5
is used. Note that the set u;(t, At), At = —1,-2,...,-T
may include outliers and the confidence values provided from
the outliers are also outliers. The objective is to robustly
estimate a confidence value from the set of confidence values

2i(t, At), At = —~1,-2,..., =T that may include outliers.
To do that, median filtering is used, i.e., for the set
=(t, At), At = -1,-2,...,-T, the overall confidence value

2;(t) is estimated as
ci(t) = ngatd ci(t, At), (6)
where “med” is a median operator.

V. EXPERIMENTS USING STATIC/MOVING SCENES

Experimental evaluation in terms of accuracy in segmenta-
tion is presented for two real image sequences:

no. | objects size(pixel) | frame rate(fps) |
1 static box 320 x 240 15
2 | moving toy car | 320 x 240 15

These two sequences are measured by a digital camera
(OLYMPUS CAMEDIA C-2020 ZOOM) moving parallel to
the ground plane with uniform velocity, and each sequence
consists of 150 images. For the two image sequences, the
optical flows are detected by using a hierarchical flow de-
tection algorithm [10] over 5 frame intervals per frame, i.e.,
At = —-1,-2,...,-5 in eq. (6) are chosen.

A. Static-Object Scene

Fig.3 (a) shows three examples of the static-object sequence,
in which there is a box fixed on the ground plane. Fig.3 (b)
shows the detected foreground regions by the proposed method
with the threshold parameter k£ = 2.3.

The only user-defined parameter in the proposed method is
the threshold % in eq. (5), which affects the performance of
the proposed method in terms of accuracy in segmentation. In
order to confirm the performance under varying threshold &,
the analysis of receiver operating characteristic (ROC) curve
is used. The obtained ROC curves are shown in Fig.3 (c),
in which the curve associated with the name, “median” is
obtained using the overall confidence value over five frame
intervals in Sec.IV. In addition to the “median” curve, the five
ROC curves, each of which is obtained using the confidence
value at a single frame interval, are presented. The curve name,
“interval 7", stands for the ROC curve obtained using the
confidence value calculated at i-frame interval.

From Fig.3 (c), the overall confidence value, “median”,
outperforms the four curves, “interval 1,2,4,5”, but does not
give the best performance, i.e., the curve, “interval 3", is
superior to the other ones. This result comes from that, in

the case of the image sequence, the optical flows are able to
be most accurately detected at three-frame interval. However,
this “optimal” frame interval is unknown unless the correct
solution is known. Although the median estimator in eq. (6)
may not provide the best confidence value, it can robustly
estimate an acceptable confidence value among the confidence
values including outliers.

The processing time to calculate the confidence values over
the whole image at a single frame interval is 3.4 msec. on
Pentium 4 with 2.0 GHz, i.e., the process is completed with
about one-tenth of the video-frame rate per frame. Therefore
the consumption time to calculate the overall confidence values
per frame is around half as much as that of the video-frame
rate.

B. Moving-Object Scene

Fig.4 (a) shows three examples of the moving-object se-
quence, in which there is a moving toy car on the ground
plane. Fig.4 (b) shows the detected foreground regions by the
proposed method with the threshold parameter k£ = 3.5.

Fig.4 (c) shows the ROC curves obtained from this image
sequence, and the curves are associated with the same names
in Fig.3 (c). The obtained ROC curves also indicate that the
overall confidence values provide the second performance in
terms of accuracy in segmentation. Thus this experimental
result shows that the proposed method can deal with not only
static foreground objects but also moving foreground objects
under the condition that the camera itself is moving.

VI. CONCLUSIONS

A motion-based background subtraction method is pro-
posed, assuming that the camera is moving parallel to the
ground plane with uniform velocity. The important property of
the proposed method is that it does not rely on the geometric
computation such as the recovery of 3D structure and motion
from optical flow. Instead of computing geometric constraints,
the proposed method subtracts the background region from a
given image by evaluating the difference between calculated
and model flows. This approach is insensitive to small errors of
calculated optical flows, whereas other methods based on 3D
information from optical flow are sometimes more sensitive.
Furthermore, in order to improve the robustness to significant
errors of calculated optical flows, i.e., “outliers”, a strategy
for incorporating a collection of optical flows calculated over
different frame intervals is presented.

The performance in terms of accuracy in segmentation is
evaluated with the two real image sequences under varying
thresholds using the receiver operating characteristic (ROC)
curves. The ROC curves shows that, regardless if outliers exist,
the proposed method can segment the foreground objects out
from the background region at 17.8% in false positive fraction
(FPF) and 71.3% in true positive fraction (TPF) for the static-
object scene and also at 14.8 % in FPF and at 72.4% in TPF
for the moving-object scene in the best cases. The processing
per frame is completed within the video-frame rate on Pentium
4 with 2.0 GHz.

Since optical flow is a scene-independent measurement, the
approach used in the proposed algorithm can be used as input
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Fig. 3. Experimental results for the static-object scene: (a) Three examples of the static-object sequence.
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Fig. 4. Experimental results for the moving-object scene: (a) Three examples of the static-object sequence. (b) The detected foreground regions. (c) The
ROC curves in terms of accuracy in segmentation, obtained by changing the threshold parameter k.

for more sophisticated visual processing in a variety of real
situations.
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