Intrusion Detection Learning Algorithm based on Aritificial Immune System

인공 면역계기반의 침입탐지 학습 알고리즘

  • 양재원 (중앙대학교 전자전기공학부) ;
  • 이동욱 (중앙대학교 전자전기공학부) ;
  • 심귀보 (중앙대학교 전자전기공학부)
  • Published : 2003.05.01

Abstract

나날이 발전하는 인터넷 기반의 네트워크 환경에서 보안의 중요성은 아무리 강조해도 지나치지 않다. 바이러스와 해킹 기술의 발전 속도는 항상 방어자의 능력을 앞지르고 있으며, 공격자들의 능력과 무관한 해킹 툴의 보급은 누구나가 해커가 될 수 있도록 하는데 일조하고 있다. 이제 더 이상 해킹과 바이러스로부터 안전지대는 없다고 해도 과언이 아니다. 이에 본 논문에서는 일정한 환경에서의 침입에 대해 학습을 하여 그 침입을 탐지할 수 있는 디텍터를 생성할 수 있는 알고리즘을 제안한다. 공격 유형의 수에 비해 적은, 그러나 인공 면역계의 T 세포 형성과정인 부정선택을 이용한 학습알고리즘을 기반으로 생성된 디텍터들은 상대적으로 다양한 공격의 침입을 탐지한다. 이의 유효성을 시뮬레이션을 이용하여 확인한다.

Keywords