Enhanced RBF Network by Using Auto-Turning Method of Learning Rate, Momentum and ART2

학습률 및 모멘텀의 자동 조정 방법과 ART2를 이용한 개선된 RBF네트워크

  • Published : 2003.09.01

Abstract

본 논문에서는 RBF 네트워크의 중간층과 출력층 사이의 연결강도를 효율적으로 조정하기 위해 퍼지 논리 시스템을 이용하여 학습률과 모멘텀을 동적으로 조정하는 개선된 RBF 네트워크를 제안한다. 입력층과 중간층 사이의 학습 구조로 ART2를 적용하고 중간층과 출력층 사이의 연결 강도 조정 방법으로는 제안된 학습률 자동 조정 방식을 적용한다. 제안된 방법의 학습 성능을 평가하기 위해 기존의 delta-bar-delta 알고리즘, 기존의 ART2 기반의 RBF 네트워크와 비교 분석한 결과, 제안된 방법이 학습 속도와 수렴성에서 개선된 것을 확인하였다.

Keywords