A distance metric of nominal attribute based on conditional probability

조건부 확률에 기반한 범주형 자료의 거리 측정

  • Published : 2003.09.01

Abstract

유사도 혹은 자료간의 거리 개념은 많은 기계학습 알고리즘에서 사용되고 있는 중요한 측정개념이다 하지만 입력되는 자료의 속성들중 순서가 정의되지 않은 범주형 속성이 포함되어 있는 경우, 자료간의 유사도나 거리 측정에 어려움이 따른다. 비거리 기반의 알고리즘들의 경우-C4.5, CART-거리의 측정없이 작동할 수 있지만, 거리기반의 알고리즘들의 경우 범주형 속성의 거리 정보 결여로 효과적으로 적용될 수 없는 문제점을 갖고 있다. 본 논문에서는 이러한 범주형 자료들간 거리 측정을 자료 집합의 특성을 충분히 고려한 방법을 제안한다. 이를 위해 자료 집합의 선험적인 정보를 필요로 한다. 이런 선험적 정보인 조건부 확률을 기반으로한 거리 측정방법을 제시하고 오류 피드백을 통해서 속성 간 거리 측정을 최적화 하려고 노력한다. 주어진 자료 집합에 대해 서로 다른 두 범주형 값이 목적 속성에 대해서 유사한 분포를 보인다면 이들 값들은 비교적 가까운 거리로 결정한다 이렇게 결정된 거리를 기반으로 학습 단계를 진행하며 이때 발생한 오류들에 대해 피드백 작업을 진행한다. UCI Machine Learning Repository의 자료들을 이용한 실험 결과를 통해 제안한 거리 측정 방법의 우수한 성능을 확인하였다.

Keywords