A Temperature-Dependent Index of Mitotic Interval (τ₀) in Haliotis gigantea and Haliotis discus

In-Seok Park^{a*}, Jae Hyun Im^b, Young-Don Lee^c, Bong-Lae Kim^d and Seock-Jung Han^e

^aDivision of Ocean Science, Korea Maritime University, Busan 606-791, Korea ^bDevelopment of Fishery Sciences, Kunsan National University, Kunsan 573-701, Korea

^cMarine and Environment Research Institute, Cheju National University, Jeju 659-810, Korea

^dTaean Marine Hatchery, National Fisheries Research and Development Institute, Taean 357-945, Korea

^eBukjeju Marine Hatchery, National Fisheries Research and Development Institute, Jeju 695-835, Korea

In order to establish effective procedures for chromosome manipulation in *Haliotis gigantea* and *H. discus*, which are of enormous aquacultural potential, temperature-dependent measures of mitotic intervals (τ_0) were determined. Mitotic intervals (τ_0) in these abalone were determined by averaging the duration of the first and third embryonic divisions over a range of temperatures from 8 to 26 °C. The relationships of each mitotic interval at two cell (τ_{II}), four cell (τ_{II}), eight cell (τ_{III}), sixteen cell (τ_{IV}) and τ_0 , to temperature (T in °C) in *H. gigantea* were log τ_I = 176.1-28.3T, log τ_{II} = 199.5-12.4T, log τ_{III} = 236.2-12.2T, log τ_{IV} = 269.3-14.1T and log τ_0 = 83.1-32.8, respectively. The relationships of each mitotic interval at τ_{IV} τ_{III} , τ_{III} , τ_{III} , τ_{IV} and τ_0 , to temperature in *H. discus* were log τ_I = 104.9-13.8T, log τ_{II} = 138.3-10.5T, τ_{III} = 172.4-10.2T, log τ_{IV} = 211.3-12.2T and log τ_0 =85.6-33.3T, respectively. There were strong, negative correlations between mitotic interval and water temperatures for all ten temperatures in these two species (*H. gigantea*: Y = -138.75 logX + 341.25, τ_0 R = 0.97; *H. discus*: Y = -112.33 logX + 255.22, τ_0 = 0.98, where Y is mitotic interval and X is temperature).

*Corresponding author : ispark@kmaritime.ac.kr

Source: Korean J. Genetics 25(1): 15-19 (March 2003)