KAISTSAT-4: A Progress Report 민경욱¹, 유광선¹, 이대희¹, 이진근¹, 오승한¹ 육인수², 선광일², 진호², 박장현², 남욱원², 한원용² Jerry Edelstein³, Eric Korpela³ ¹한국과학기술원 ²한국천문연구원 ³Univ of California, Berkeley KAISTSAT-4 is to be launched in August 2003 into an orbit at 800 km altitude with the intended mission shared between astrophysics and space physics. The primary objective of its astrophysics mission is to provide spectral sky survey data of hot Galactic plasmas in the far-ultraviolet wavelength range. Far-Ultraviolet Imaging Spectrograph (FIMS) is sensitive to emission line fluxes in 900 - 1175 Å and 1335 -1750 Å. These wavebands include important C IV and O VI lines that will reveal the spatial distribution of the hot interstellar matter and thereby distinguish the plausible evolution scenario of hot Galactic gas from various existing models. The FIMS imaging spectra of the aurora will be compared with simultaneous in-situ plasma measurements of eV to MeV energies. The FIMS bandwidth includes the Lyman-Birge-Hopfield (LBH) emissions that will provide information on the total precipitated electron flux and average energy of electrons in an aurora. A 10 Hz FIMS spectral sampling rate will yield images of sub-kilometer spatial resolution which are sufficient to reveal new information on the dynamics of auroral breakups. We will describe the present technical status of the program as well as the policy for the usage of the data.