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Abstract

A multi-agent system designed to represent newly
deregulat=d electricity markets in the USA is aimed at
testing thz capability of the multi-agent model to replicate
the observed price behavior in the wholesale market and
developing a smart business intelligence which quickly
searches the optimum offer strategy responding to the
change in market environments. Simulation results show
that the optimum offer strategy is to withhold expensive
generatinz units and submit relatively low offers when
demand is low, regardless of firm size; the optimum offer
strategy during a period of high demand is either to
withhold -apacity or speculate for a large firm, while it is
to be a price taker for a small firm; all in all, the offer
pattern observed in the market is close to the optimum
strategy. From the firm’s perspective, the demand-side
participaiion as well as the intense competition
dramaticclly reduces the chance of high excess profit.

Keyword:: Multi-Agent Simulation; Kalman Learning;
Decision ‘heory; Optimal Strategy, Electricity Auction

1. Introluction

Newl:s deregulated electricity markets have exhibited
unsatisfactory results, most notably in California. Since
electricity is a central component of modern economies,
market cperators and regulatory agencies continually
introduce new types of market structures to obtain a more
reliable e ectricity market. Recent introduction include new
auction r:iles, a reserve market, demand-side participation,
a custom:r’s choice of retail services, financial hedging
tools, anil even new industries, such as power brokers,
marketers, and load aggregators (North et al, 2002).
Furthermore, deregulation and unbundling of the generation,
transmiss on, and distribution functions provide many
choices for a supplier, such as vertical integration, merging
with othe - firms, entering into the new market, or divesting
from the market. This variety of choices for generating
firms, customers, and the market operators implies that
electricity markets are not fixed, but continue to change.

This type of evolving market requires suitable modeling
tools that can be used to test the new market structures and
new marl et rules before they are applied to real markets.

Agent-based modeling techniques make it possible to
represent electricity markets with multiple agents, to test
new market structures in advance, and to plan ahead for by
correcting flaws in the design.

This paper employs a computer-generated multi-agent
simulation method for modeling wholesale electricity
markets in order to understand 1) dynamic interactions
between offer behavior of supply firms and market price,
and 2) how each firm adjusts its offer strategies to suit the
production conditions and market conditions.

In section II, the multi-agent system is initiated by
defining each of its elements. Section III illustrates the
learning and decision algorithm. Then, section IV describes
five market scenarios tested in this paper. In section V,
simulation results are discussed. Lastly, section VI
concludes this study.

I1. Defining a Multi-Agent System

A multi-agent system consists of three main elements:
the environment, agent, and task. Figure 1 shows how these
elements are incorporated into the multi-agent system for
simulating a market for electricity. A description of each
component follows:

The environment:

The environment represents the domain in which a
decision-maker or an agent interacts. In our multi-agent
system, the environment is a spot market for electricity.
This multi-agent system is not specifically aimed at
modeling the Pennsylvania-New Jersey-Maryland (PJM)
market, but we use the indusiry structure and operating
rules of the PJM market in 1999 for the following reasons:
1) the PJM market was restructured in 1999, and
consequently, we can observe the initial offer behavior as
well as evolutional changes of offer behavior in repeated
auctions, 2) a number of price spikes, which are important
issues for policies, are observed in the market, 3) offer data
in PJM provides rich information about industry structure
and the actual offer behavior of individual firms, which can
be used to build the industry structure among firm agents
and to evaluate the performance of the multi-agent model in
replicating observed behavior, and 4) in 1999, PJM had one



settlement market, which makes the initial test of a multi-
agent system easier compared to a two settlement market.

Referencing the PJM market in 1999, we define the
following characteristics of the environment: 1) any level of
offer is allowed if it does not exceed the price cap, 2) the
last accepted offer price (i.e. the highest offer) sets the
market price, and all accepted offers are paid the same
market price (i.e. a uniform price auction), 3) the market is
a one-settlement system, 4) in cases of supply shortage,
withheld generators are randomly recalled at the price cap
to meet load, 5) import offers can set the market price, and
6) demand is inelastic in the auction (i.e. there is no price-
responsive load) and the pattern of load used in the
simulation is exogenous.
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Figure 1. Multi-Agents in the Electricity Spot Market

The agents:

An agent is a computer program that is placed in the
environment, and is capable of autonomous action in order
to meet its objectives (Weiss, 1999). Figure 1 shows two
categories, a group of firm agents (Agent I - Agent V) and a
market operator agent (ISO). The former represents power-
generating firms, while the latter represents an ISO. From
perspective of classifying agents, firm agents are CI agents,
which learn from previous experiences to perform the
desired task efficiently, but the ISO agent is not a CI agent
since it does not learn, but simply applies a fixed set of
rules to determine the market price and forecast load.

There is no difference among firm agents except the
amount of installed capacity. To minimize simulation time,
we reduce the number of firms in the market (i.e. eleven) to
five agents (see Figure 1). A firm agent can represent
multiple firms of which the installed capacity is similar to
each other. Besides offers submitted by individual firms,
the sum of zero price offers and offers from outside the
PJM area are incorporated into the total supply curve. The
sum of all zero price offers represents the aggregate of
generating capacity from hydro generators. These offers are

not determined by individual firms, because all hydro
capacity is submitted with a zero offer price under the
market rules. Consequently, hydro capacity is treated as
given data in our system. Imported offers are submitted by
firms located out of the PJM area, and therefore, offers
from imports are treated as given data.

Note that end-user customers or distributors are not
designated as separate agents in our system for the
following reasons: 1) load is absolutely inelastic, and end-
user agents do not affect market outcomes because the
actual load is treated as given data, and 2) distributor agents
are not necessary, because bilateral trading with generators
is not allowed in our system. The role of distributors, who
tell the ISO how much power they want to buy from the
spot market, is implicitly included in the ISO agent, who
buys electricity to meet the entire load. Even if a price-
responsive load schedule exists, the function of a distributor
in adjusting the load by a pre-determined schedule of
interruptible loads can also be built into the ISO agent
instead of introducing a separate distributor agent.

The task:

In a multi-agent system, a group of CI agents execute
the given task. As shown in Figure 1, five firm agents
(Agent I - Agent V) and a market operator agent (ISO)
interact in a multi-agent system. The task of the five firm

agents is to submit offers, (p, g,) - (p, q,), into the

spot market. By submitting offers, they try to earn as much
expected profit as possible.

The task of the ISO agent is to operate the electricity
market using the rules of a uniform price auction. Market
operations include the following tasks : 1) aggregate offers
submitted by individual firm agents, zero price offers and
imported offers, 2) calculate the total supply curve (S), 3)
find the optimum dispatch schedule to minimize the cost of
purchasing the amount of electricity needed to meet the
load, 4) set the market price, 5) recall generators originally
withheld from the market in case of supply shortage, 6)
inform each agent of how much it sells and the
corresponding earnings, 7) post the market price paid to
agents, and 8) post a new load forecast for the next trading
period. Using this load forecast, a firm agent derives the
residual demand curve for the next trading period. Note that
the task of the ISO agent does not include intervention in
the market in order to stabilize the market price or change
the market rules. This exclusion implies that a firm agent
will not be worried about policy intervention, but will
exercise whatever market power it possesses.

In contrast to machine learning, where multi-agent
systems are commonly applied, our system has no overall
task and no supervising agent to control the overall process.
Within our system, each firm agent competes with other
firm agents to maximize its own profit. All firm agents
determine their offers synchronously and independently,
and the ISO agent operates the spot market independently.
This reflects the market rules that prevent one firm from
communicating with another on offer strategies. Assuming
that the electricity market is continuously operated in this



way, the task horizon is infinite. This excludes the
possibility of atypical offers that a firm agent may make at
the end of the simulation period. Due to the sequential
process, in which the ISO agent waits for firm agents to
submit offers and each firm agent waits until the ISO agent
determine.; the price and the dispatch schedule and opens a
new round, the interaction mode between the firm agent
and the IS D agent is asynchronous.

II1. Lea ning Algorithm and Decision Rules
Model-based Kalman-adaptive learning:

A firra agent in our multi-agent system anticipates
forthcomiig market conditions using the residual demand
curve, anc. the residual demand curve is updated whenever
new infor nation is available. New information is embodied
in the pr.ce prediction error. Using the price prediction
error, a fi'm agent modifies two parameters of the residual
demand curve using Kalman filtering techniques.

Specifyin; the learning model:

The aaalytical approach here is to specify a model of
the residial demand faced by an individual firm and to
estimate it using an econometric model. As Mount (2000)
noted, the results are conditional on the empirical model
specificat ons adopted. In an early study, I showed that the
total supply curve was sharply kinked for the last few units
of the cajacity offered and an inverse function (1) fitted
this shap¢ of the supply curve reasonably well. Hence we
specify tiie residual demand function of individual firms
based upcn the following total supply curve.

Total sup>ly function:

N 1 (1)
t = — 2 =2
A4, +B,-(IC-0)IIC

where
P, = arket price at time ¢ ($/MWh)

Q, = s1m of offered capacity (MW/h) from all firms at

t

ime ¢
IC = tctal installed capacity in the market

Residual Jemand function:
The -esidual demand function for a firm i, which

controls *; percent of the total installed capacity, is derived
from the otal supply function (1) as follows:

P=— ! 2
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where
p, = muxket price (3/MWh) at time ¢

Q,, = quantity (MW/h) dispatched by firm i at time ¢

¢ = (1--7)-IC , total installed capacity of all firms
except firm J

D, =load (MW/h) at time ¢

A, B, = parameters of the residual demand curve

i

faced by firm / at time ¢

All variables of the residual demand function which relate
total quantity dispatched by firm i, o, 0 the market price

P, are known or approximated at the beginning of time ¢
except two parameters ( 4,, and B, ). This is because 1)

total installed capacity in the market (;¢) is fixed in the
short run, and every firm knows this value, 2) the market
share of firm i, 7;, is fixed in the short run, and 3) the load
forecast approximates the actual load with a known
distribution, N(Dm_l,&tz). This is the typical situation

underlying a time-varying parameter model.

A time varying parameter model' is used to estimate the
residual demand curve, because the parameter estimates of
the residual demand function are only indirectly observable
and vary over time. A time-varying parameter model
consists of a measurement and a transition equation,
represented by equations 3 and 4, respectively.

Measurement equation:

PL = [1 (C-D,,+Q)/C 2]. [A""']+ e, 3
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where
By, = market price for time # expected at time -1
Q, = quantity dispatched (MW/h)
C=(- 7)-IC , total installed capacity of all firms

except firm i
Dy = load forecast (MW/h) for time ¢ used at time #-/

Ay1, By, = parameters for time ¢ estimated at time ¢-/,

»Btll:—l = [At,l,r—l B)Jt-l T
e, = stochastic disturbance, iid. N(0,R)

The measurement equation 3 is the inverse of the
residual demand function (equation 2). In general, a time-
varying parameter model specifies a pre-determined
dynamic structure for the transition equation.

! The residual demand curves are estimated for a firm, firm i. For
the simplicity in the expression, the subscript i is ignored from the
next step. In other words, the estimated parameters, the predicted
market price, the quantity dispatched, the market share, and the
installed capacity implicitly indicate those of firm i, unless
additional explanations or a subscript are not specifically
designated.
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Transition equation:

[Atlt—l}z[fn 0 fu 0].
By 0 fu 0 fn
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F
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where

F = transition matrix

By = parameter estimate for time ¢ estimated at time -,
By =[Aga  ByY

ﬁ,_l = unbiased parameter estimator for time ¢-/ adjusted
at time ¢-/, Bia=[4a Bl

v, = stochastic disturbance, iid. N(0,Q)
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A
ér—l " Vie :l “@
A

The transition equation 4 shows that the parameter
estimates of the residual demand function, 4, and B,

follow a second order Markov process. This implies that
only the market conditions at ¢-/ and ¢-2 are informative for
predicting the market conditions at time f. Note that the
‘hat’ of fj, refers to an unbiased estimator of

B, ELB, - B,1=0, while By is a step ahead estimate of
B,
Kalman updating process:

Figure 2 shows how the residual demand function

combined with a Kalman filter receives market information
and predicts the market price.
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Figure 2. Predicting Market Price Using the Residual
Demand Curve

Suppose that a firm has the residual demand curve as
shown in box (1) of Figure 2. On this residual demand
curve, the market price at time ¢ is expected to be Pyoy if

the quantity dispatched by this firm is o; - On the following
day, at time ¢, the actual market price for dispatching Q; is
realized at p, which is much higher than the expected
market price of Py (see box (2) in Figure 2). If the

residual demand curve is correct, the actual market price
should be the same as the price prediction, Py within a

statistically allowed disturbance range. In other words, the
prediction error implies that the residual demand curve of
this firm was incorrect. Moreover, the forecasting error
contains new information, previously unknown to the firm.
Note that the residual demand curve is defined by two
parameter estimates, and the Joad forecast approximates the
actual load. Hence, there are two sources of price prediction
error: 1) the load forecasting error, ( D, -Dy.,) and 2) mis-

specified parameter estimates, (7, - Ay and ( B, - Byy)-

In order to determine unbiased estimates of the two
parameters, we need to extract the proportion of the price
prediction error caused by load forecasting error. Box (3) in
Figure 2 shows this process. The residual demand curve at
time ¢ is re-defined using the actual load (D, ) instead of the

load forecast ( Dm_l). The adjusted price prediction, Pti,_l,
corresponds to the same dispatched quantity Q; . The
distance between the actual market price ( p,) and the
adjusted price prediction ( Px]r-l) measures the price
prediction error caused by the estimation errors for Ay and
By, This price prediction error is used to determine

unbiased parameter estimates at time ¢, jt and 1}, , to make

the observed market outcome of ( P, Q: ) closer to the

adjusted residual demand curve.
Box (4) in Figure 2 is the new residual demand curve
for time ¢+/, which is determined by a new load forecast

for time #+1/ ( Dmu) and new parameter estimates. The new

arameters estimates, and are determined by the
p Ay B y

1)
second order Markov process using the previous unbiased
estimates of the two parameters. Note that these parameters
determine the shape of the residual demand curve. The new
residual demand in Box (4) is more curved and the
predicted market price for time #+/ is higher than before at
the same dispatched quantity, O], reflecting the influence

of the price spike. The new residual demand curve for time

t+1 is also affected by the new forecast of load, D, e

represented by the change of c'(D))=c(D, | ,2” ét) to
c’(DH—]’t) = C(Dr+llt | At+l[t H B ) in box (4)

1+t



Imperfect rerception and dynamic learning:

Kalmai-adaptive learning allows for imperfect
perception and dynamic knowledge, because 1) a firm agent
perceives the market state with stochastic disturbances (i.e.
imperfect perception), and 2) an agent with fixed
knowledge is unable to modify its understanding of the
environment, but each firm agent in our multi-agent system
updates its understanding of the spot market whenever new
informatioa is available (i.e. dynamic knowledge).

Decision Flules

While a learning algorithm explains how a firm agent
recognizes market conditions, the decision rules explain
how the frm agent selects the optimum offer under given
market conditions. Since given market conditions are
estimated >y the residual demand curve, the optimum offers
are based upon the updated residual demand curve. We
assume that each firm only pursues the profit maximization;
the cost aad capacity structure are identical among firms;
the highe:t marginal cost is $55/MWh, which intends to
exclude thz speculation driven by the marginal cost.

Stochastic Optimization Under Uncertainty:

Suppcse that the block capacity is @; -g; , the
marginal cost of this block is mc and a firm considers
whether to submit the offer price of offer,, - For any offer

in the auc ion, there are three possible outcomes determined
by the ma ket price P:

1) E> offer, Fully dispatched ,
2) I =offer, Partially dispatched
3) F<offer, Not dispatched

Expected net profit of an offer:
The expected profit is calculated as the excess profit

above the operating cost (i.e. marginal cost + stand-by cost).

In place cf calculating the expected profit, we calculate the
expected aet profit as the difference between the expected
profit of t 1e target block and the total expected profit of the
pre-select:d blocks, because 1) the optimum offer
maximizes both the expected profit and the expected net
profit, ani 2) the block is withheld if it does not increase
the expec ed profit of the firm.

Suppcse a firm determined the optimum offer of the
second bock at 02, and then searches for the optimum
offer of ti ¢ third block. The optimum offer for this block is
found numerically to maximize the following expression

(%)

AE[” [ o.lrerp ]1|r~1 (5)

= [ Qu (PLD.Qy1~me): f(D)dD
+ [ 0ID,offer ,1-(offer , — me)- f(D)dD

+ [0, PID.Q,]- f(D)dD
=sb(Qy ~Q.)
- [ 0. PID.Q,)-f(D)dD

where
AE[r | offer,),,., = expected net profit for time t

conditional on the offer price ($/h)
offer,= offer price ($/MWh)

P[D, Q] = market price (§/MWh) when load is D and the
capacity dispatched by this firm is Q

Q, = maximum total capacity dispatched when the

block is not dispatched (MW/h)
Q, = minumum total capacity dispatched when the

block is fully dispatched (MW/h)
QID, offer,] = capacity dispatched by the firm

when the offer sets the market price
IC =total installed capacity in the market

¥ = the proportion of the firm’s installed capacity to J{ C
(Qy - 0O, )=size of the block

mc = marginal cost ($/MWh)
sb = stand-by cost (53/MWh)
f(D) = probability density function of the load (D)

D y = minimum load for full dispatch (MW/h)
D, = maximum load for not being dispatched (MW/h)

D, = maximum load that the offer for the previous
block, 02, is not dispatched (MW/h)

The first, second and third components of the objective
function correspond to the first (fully dispatched), second
(partially dispatched, offer sets the market price) and third
(not dispatched) outcomes, respectively. The fourth
component is the total stand-by cost. The expected profit of
this offer is, therefore, the sum of these four components.
On the other hand, the fifth component represents the
expected revenue for the pre-selected blocks (the first two
blocks in this case). Hence, the expected net profit of offer,

is the difference between the sum of the first four
components and the fifth component. The optimum offer of
the third block is determined to maximize this difference,
the expected net profit.

Withholding decision:

After finding the optimum offer for a block, the next
step is to determine whether to withhold the block. If a
block is operating and the expected net profit of the
optimum offer is positive, the block is submitted into the
auction. If the expected net profit is negative but the
withholding penalty is larger than the magnitude of the
negative expected net profit, the block is submitted into the
market in order to save the withholding penalty. If the
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expected net profit is negative and the magnitude is larger
than the withholding penalty, the block is withheld.

Action Dimensions:

Dimensions of the agent action (Santamaria, 1997) are
defined as: 1) a discrete action space, because the block
offer price can be selected between $0 to $1000 MW per
hour with a discrete interval of $1, and the offer quantity is
either 0 or the entire capacity of the block, 2) a discrete
decision time space, because each agent in our system
executes a decision at a fixed time interval, and 3) a
stochastic outcome, because market prices and the earnings
of a firm agent for exactly the same set of offers are
affected by the actual load, contingencies, and the actual
offers of other agents.

IV. Market Simulation Scenarios

The multi-agent model is applied to five different
market scenarios. Considering the three components of a
multi-agent system, the task and environment are almost
identical for the five market scenarios, while the
characteristics of the firm agents vary. For each scenario,
the number of simulation rounds is fifty. The daily load in
the PJM market from June 15, 1999 to August 3, 1999 is
used in all five scenarios as an exogenous input. The
rationale for defining each scenario follows:

Scenario 1- purely competitive agent:

The distinction in scenario 1 is that each firm agent
submits its total installed capacity at true cost into the
market. This scenario therefore defines the ideal market
price and purely competitive offer behavior. The results are
used as benchmarks to measure the degree of price
distortion and the level of monopolistic offer behavior in
the other scenarios. In the other four scenarios, each firm
agent determines the offer curve to maximize the expected
profit.

Scenario 2- base:

Eleven generators in the PJM market are represented by
five different firm agents, and these agents submit optimum
offer curves into the market. This scenario is termed ‘base’
since the firm agents represent the actual size and cost
structure in the PJM market. The objective of the base
scenario is to test the capability of the multi-agent model to
replicate the price volatility and the heterogeneous offer
behavior of individual firms observed in electricity markets.
The simulation results of the scenario 2 are used to evaluate
the impacts of market policies and industry structures in the
remaining three scenarios.

In order to optimize the offer curve, each firm agent
perceives the market conditions using a Kalman adaptive
learning algorithm and selects the optimum offer curve.

Scenario 3- price responsive load:

The distinction of the price responsive load scenario is
the inclusion of demand-side participation. Everything else
is the same as in scenario 2, but the ISO agent adjusts the
load according to a pre-determined load reduction schedule.
This schedule represents interruptible contracts between
distributors and end-users to cut the demand gradually if the
market price is above a certain level. The initial load is the
same as the load in scenario 2, but it is reduced by steps of
two percent when the market price exceeds $300/MWh,
$500/MWh, $700/MWh and $900/MWh,

Scenario 4- 6 big:

Scenario 4 is termed ‘6 big’, since total installed
capacity in the market is the same as it was in the previous
three scenarios, but there are only 6 identical firms instead
of 11 different firms. Each firm is represented by the cost
structure of the largest firm agent (Agent I), scaled to the
appropriate size. The other characteristics are the same as
the base scenario. This scenario tests the effects of a more
concentrated industry structure on the market price and the
offer behavior.

Scenario 5- 30 small:

This scenario is the opposite of the previous scenario.
The total installed capacity in the market is the same as it
was in the previous four scenarios, but the number of firms
is increased to 30. Each firm is represented by cost
structure of the smallest agent, Agent V, scaled to the
appropriate size. Other characteristics are the same in the
base scenario. This scenario investigates the effect of a
decentralized industry structure on the market price and the
offer behavior.

V. Simulation Results

Simulation results of each scenario are summarized by
the simulated market price and the simulated offer curves of
two of the firm agents. The selected offer curves
correspond to the largest (Agent I) and the smallest (Agent
V) firm agent, and show how the offer behavior changes
with firm size.

Market price:

Figures 3 and 4 plot the actual daily maximum price
and the simulated market prices for the five scenarios. The
actual market price plotted at the top of Figure 3 is
relatively low during the non-peak load period, while it is
relatively high and volatile during the peak load period. The
average market price is $207/MWh and there are 10 price-
spike days in the sample of 50 days.

Price behavior simulated in the purely competitive agent
scenario is the second plot of Figure 3. This shows that
competitive market prices are relatively low in both the
non-peak load period and the peak load period. The average
market price in this scenario is only $45/MWh, less than a
quarter of the actual average price.

When each firm agent acts strategically to set the offer-
curve, the market price is much higher than the competitive
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level. The average market price of the base scenario
(scenario 2) shown in Table 1 is $318/MWh, which is 7
times the ¢ ympetitive level of $45/MWh in scenario 1. The
third plot of Figure 3 shows the base scenario. The price
volatility d aring the peak load period observed in the PJIM
market is eplicated by the base scenario, but it is even
higher. There are 15 price spikes in scenario 2 compared to
10 observed price spikes. The bottom plot of Figure 3
shows that price volatility is substantially reduced when
load is price-responsive in scenario 3. The market price in
the price-iresponsive load scenario barely exceeds the
threshold »oint of $300/MWh needed to activate the
interruptible load schedule. The average market price is
reduced by 53 percent compared to the base scenario and
the numbe: of price spikes is reduced from 15 in scenario 2
to 2 in scerario 3.
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Figure 3. Actual and Simulated Prices for Scenarios 1, 2
and 3

Figure 4 shows how the market price is influenced by
changing t1e industry structure. The price behavior of the 6
big scenar o is plotted at the top of Figure 4. This result
shows that price spikes persist in the market on either peak
load days or non-peak load days when the number of firms
is small. The average price of the 6 big scenario increases

to $655/MWh, and there are 33 price spikes, over twice as
many as the base case. Hence, the common belief that six
competitors should be sufficient to make a competitive
market workably is not upheld in our multi-agent system.

Market prices in the 30 small scenario, shown at the
bottom of Figure 4, are relatively low but not as low as the
competitive scenario. The average market price is
$67/MWh in scenario 5, which is 50 percent higher than the
competitive level of $45/MWh. However, $20/MWh of
this high average price is caused by the single price spike.
Without this price spike, the 30 small scenario would be
close to competitive as expected. The overall conclusion is
that the stochastic characteristics of an electricity market
make it inappropriate to use the standard rules for defining
a competitive market. More firms are needed to make this
type of auction competitive than a typical auction in which
the quantity sold is deterministic.

~—u— 6 Big (Scenario 4)
§wn T Base (Scenario 2]
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Figure 4. Simulated Market Prices for Scenarios 2, 4 and 5

Table 1 Actual and Simulated Market Prices

Freq.
Mean StD | (>$300)
Actual market price $2074 | 338 |10
Simulated Purely $45.2 8 0
(mixed- competitive
sizes) agent
Base $317.5 | 409 | 15
Price- $1489 | 205 |2
responsive
load
Simulated 6 Big $655.4 | 451 | 33
(the same
size) 30Small | $66.7 | 136 | 1 )
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Offer curves of two different firm sizes:

The price spikes in the simulations imply that at least
one firm agent exercises market power. Figures 5 and 6
show the offer curves of a large firm (4gent I) and a small
firm (Agent V) on a typical non-peak load day (June 15,
1999) and a typical peak load day (July 27, 1999),
respectively.

Figure 5 compares the offer curves of the two agents for
the first three scenarios (scenarios 1, 2 and 3). The dotted
line generated by the purely competitive agent scenario
shows all capacity offered into the auction at the true cost.
In scenarios 2 and 3, the offer curves for the non-peak load
show that some capacity is withheld (Cournot behavior)
regardless of firm size. However, the proportion of the
capacity withheld is larger for the large firm than the small
firm. The impact of the price-responsive load schedule on
the offer behavior is minor for both firms during the non-
peak load period.

Hon-Peak Offexr Curves of the Agent V
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$/MWh
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==f+= Base (Scenario 2)
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250 4

0 et T .
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$/MWh Laage )
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o 4000 8000 12000
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Figure 5. Non-Peak Offer Curves for Scenarios 1,2 and 3

Figure 6 illustrates the optimum offer curves submitted
on the peak load day. Figure 6 shows that the small firm is
a price taker in all three scenarios. No capacity is withheld
when the load is high. In contrast, the large firm behaves as
a heavy lifter in scenarios 2 and 3, and speculates and

withholds capacity. With price-responsive load, the large
firm speculates less but withholds more capacity.
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Figure 6. On-Peak Offer Curves for Scenarios 1,2 and 3

I do not picture the optimum offer curve for the 30
small firms (scenario 4) and the 6 big firms (scenario 5),
but the optimum offer strategy is the same as that of the
small firm for scenario 4 (top plot in Figure 6) whereas it is
the same as that of the large firm (bottom plot in Figure 7).
This implies that the best strategy is to be a price taker
when the competition is intense although it does not
provide high excess profit. In contrast, it is the optimum to
exercise the market power when the market is oligopolic.

V. Conclusion

In this paper, we simulated the dynamic interaction
between the offer behavior of individual firms and the
market price. The market price is determined by offers
simulated by several firm agents, each agent also reacts to
the market price in the following period. In the base
scenario, 1) evolutionally changes in offer behavior, 2)
heterogeneous offer behavior by firm size, and 3) volatile
market price behavior were demonstrated. These
characteristics are similar to the behavior observed in the
PJM market.
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Three s:enarios testing market policies showed the
importance »f price-responsive load and a less concentrated
market structure in order to achieve efficiency in an
electricity market. Price-responsive load and more
competing firms mitigated price volatility and the
monopolisti > offer behavior of individual firms.

In spite of the capability explaining the observed offer
behavior ard price volatility, our multi-agent system is
restricted. ‘n terms of the learning algorithm, Kalman
adaptive lezrning depends on a model, the residual demand
curve. As i consequence, this learning algorithm cannot
generate purely evolutionary changes in offer behavior. In
addition, tke risk-neutral attitude assumed for each firm
agent does :10t reflect the various risk attitudes of the actual
firms. A fiim may be risk-prone until the expected profit
reaches a minimum target level, then risk neutral for some
range of profit, followed by risk averse after expected profit
exceeds a -arget level. Specifying a pure-generating firm
with no finincial contracts also cause simulation bias since
offer behavior may vary if a firm is vertically integrated or
has financiz 1 contracts.

In term; of decision rules, our system is also restrictive
since only the immediate reward is considered. In other
words, an >ffer delivering less profit in the short run but
more profits in the long run is not considered as the
optimum o Yer strategy in our system. In addition, our firm
agents selcct only one offer for a block as well as
determininy; either to withhold or submit the entire block.
Multiple offers are allowed for each block in the real
market. Acdressing these restrictions must be left to future
study.
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