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GUIDED WAVE MODE IDENTIFICATION USING
WAVELET TRANSFORM

Ik-Keun Park*, Hyun-Mook Kim®, Young-Kwon Kim™, J. L. Rose™"

{ Abstract }

wave energy distribution in a time-frequency.

One of unique characteristics of guided waves is a dispersive behavior that guided wave velocity changes with an excitation
frequency and mode. In practical applications of guided wave techniques, it is very important to identify propagating modes
in a time-domain waveform for determination of defect location and size. Mode identification can be done by measurement
of group velocity in a time-domain waveform. Thus, it is preferred to generate a single or less dispersive mode But, in
many cases, it is difficult to distinguish a mode clearly in a time-domain waveform because of superposition of multi modes
and mode conversion phenomena. Time-frequency analysis is used as efficient methods to identify modes by presenting

In this study, experimental guided wave mode identification is carried out in a steel plate using time-frequency analysis
methods such as wavelet transform. The results are compared with theoretically calculated group velocity dispersion curves.
The results are in good agreement with analytical predictions and show the effectiveness of using the wavelet transform
method to identify and measure the amplitudes of individual guided wave modes.

1. INTRODUCTION

The guided wave techniques extensively and
successfully  applied methods for  long-range
nondestructive inspection. Dispersion is a very unique
characteristic of guided waves; the velocity of guided
waves changes with excitation mode and frequency.
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Wave penetration power, attenuation, and sensitivity to
defects also highly depend on frequency and mode.
Thus, in applications of guided wave techniques, it is
very critical to identify propagating modes in a

structure for determination of defect location and size.
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A common and simple way to identify guided wave
modes is measuring group velocity under certain
excitation conditions such as frequency, structure
geometry, and wave incident angle. However, in many
cases, it is not easy to generate a single mode or identify
the modes in a time-domain waveform due to
superposition of multi modes and mode conversion due
to scattering from defects or a boundary of structures.

Recently, there has been considerable interest in the
application of wavelet transform[10-12] to signal
processing application. In contrast to the Fourier
Transform, whereby a time domain signal is
decomposed into its constituent frequency components
without regard to the temporal order of the components,
the wavelet analysis uses sets of scaled basis functions
that can provide a decomposition in terms of both time
and frequency analysis have been found for
interpretation  of  acoustic, sonar, and radar
signals[13-15] and data compression[16]. Significant
number of studies has been carried out on the signal
analysis for guided wave mode identification [1-3].
Fourier transform is a well-known method and has been
widely used to analyze frequency component in the
entire signal at once. But, Fourier transform provides
information only on a frequency spectrum which is not
dependent on time. Thus, it is not suitable for analyzing
signals varying with time. For guided waves, several
modes can be generated in a frequency range and each
mode travels at different velocities. Thus, it is
impossible to extract frequency component of each
mode using the Fourier transform. In order to overcome
this problem, time-frequency analysis methods such as
Wigner-Ville distribution, wavelet transform (WT), and
Short Time Fourier Transform (STFT) have been
developed and applied to time-varying signals analysis
[4-7). In the time-frequency analysis methods, the wave
energy distribution is represented in a time-frequency
plane. A time-domain signal is split into a series of
small pieces using a wavelet function and each piece is
Fourier transforms. Consequently, the frequency
spectrum of a small portion of the time-domain signal is
displayed in time sequence. With a known wave travel

distance, the time-frequency information can be
transferred into the group velocity-frequency domain.
By comparing the wave energy distribution obtained
from WT with the theoretically calculated dispersion
curves, modes in the waveform can be identified.

In this study, first, theoretical wavelet transform is
applied to guided wave mode identification in structures
such as a plate. The group velocity-frequency
representations obtained by each method are then
compared with theoretically calculated dispersion curves
in the structures. :

2. MODE IDENTIFICATION ANAYSIS

2.1 Wavelet Transform(WT)

Classical Fourier analysis provides a spectral
representation that is independent of time. However,
many vibration processes exhibit nonstationary
behavior, which cannot be effectively described
using this analysis. A number of different
time-variant methods exist for The CWT or
continuous-time wavelet transform of an arbitrary
function f(t) as given by Strang and Nguyen[11] is
defined nonstationary processes, including: adaptive

transform),
(Wigner-Ville
distribution), and time-scale procedures (wavelet

techniques(short-time Fourier
time-frequency techniques
transform). A fundamental difference between
wavelet analysis and other methods is that instead
of seeking to decompose a signal into its
harmonics, which are global functions, the signal is
broken down into local functions called wavelets.
The concept of wavelet analysis has many different
origins from mathematics to signal processing. For
the sake of completeness a brief introduction to the
relevant wavelet theory is given in this section.
More detailed analysis can be found in Ref. 10.
The CWT or continuous-time wavelet transform of
an arbitrary function f(t) as given by Strang and
Nguyen[11] is defined
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W, (@,b)= [ £ (O, (0)dt 0

including the analyzing function

W)= \—}ZW(%&) @)

as wavelet functions, With the position variable
b and the scale variable a, where )0 and *
denotes complex conjugation. The function ¥ () is
the mother wavelet (analyzing wavelet).
It satisfies the admissibility condition on ¥ (t)

Te@f o )
@]

—®

where \;l(m) denote the Fourier transform w(®@) of
defined by

f@>= Jroea @

Although there are many choices for the
analyzing wavelet, we adopt the Gabor wavelet,
since it provides the best time frequency resolution
as confirmed by the uncertainty principle [12}.

The Gabor wavelet is expressed as [8]

W (1) = #@'CXP[“%(F‘;—J)Z]GXP("@)’) 5)

and its Fourier transform is expressed as

@yt

f)2
wg(w>=—;‘/j%\/wzexp[— L (@-0,)']
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where@ and 7 are positive constants. Although
the Gabor wavelet does not satisfy the admissibility
condition (3) in the strict sense, it approximately

satisfies the condition if 7 is sufficiently large.

l T T T I T T L
* Imaginary Part

(a) Gabor function

2 —— T T

(b) Fourier transform of gabor function

Figure 1 The Gabor wavelet and the Fourier
transform of Gabor wavelet t=nv2/ln2 and

0,=12n

In this study, we set Y=m2/In2=5336
according to Morlet [9]. If eq (5) is substituted
into eq (1), it is understood that the WT using the
Gabor wavelet has a similar form to the Fourier
transform with Gaussian windowing. Hence we set

®, =27 gych that 1/a takes the same value as the
frequency @/(2m).
Figure 1 shows the Gabor wavelet and its

Fourier transform. the Gabor wavelet o Iis
localized around the time (t)=0, and its Fourier
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transform  ¥,@ is localized around the angular
frequency ®=®, It is easily understood that the
function W,@-9/8 s Jocalized around t=b and that
its Fourier transform [aexp(-ib@)V¥,®] js localized

around ©®=@®,/a  Hence the magnitude of WT,

kWb represents the "intensity” of the signal f(t)
around the time t=b and the angular frequency

0=0,/a

2.2 Wavelet Transform and Dispersion

To illustrate the use of the wavelet transform
in the analysis of dispersion, let us consider two
harmonic wave of unit amplitude and different

angular frequency @, and @, propagating in the

x-direction, given by

u(x’t)=e—i(k,x—a)‘t) +e—i(k1x~wlt)

= 2cos(Akx — Awt)e” ko0 0
where &, and K, are wave numbers.
k., =k +k,), o =(w+0,)/2 ®)

and dk=(k-k)/2  Ao=(o-w0,)/2 ©)

If Aw is sufficiently small, the group €¢ at the

angular frequency @ can be defined as
C e = Aw/ Ak (10)
When the Gabor wavelet is adopted as the

analyzing wavelet, the magnitude of WT of

u(x,t) s obtained as [8]

(W)(x,2,b)] = Va ([0, (a0, )T + [, (a0,

+20,(a0,) 9 (aw,) cos(2Akx —240b)"*  (11)

If Aw is sufficiently small such that

9,30, 0, (30,) = ¢, (20,)

we obatin
[(Wu)(x,a,b)| =

" 1
V2a | g@an,) |- [1+ cosQdke—24wb)] * )

This equation indicates that the magnitude of WT
takes its maximum value at @ =@,/®@, and
b=(Ak/Aw)x=xlc, Therefore, for fixed x, a
three dimensional plot of (U2 u)(x,a,b)[ on the

(ab)-plane has a peak at (@b} =w/@.x/c, 1,
other words, the location of the peak on the (a,

b)-plane indicates the arrival time ©=*C; of the
wave having angular frequency

w=0,la

3. EXPERIMENTAL SETUP

For the excitation of guided waves, a couple of
0.5 MHz commercial type contact longitudinal
transducers were used with variable angle shoes.
Guided waves were excited on sample steel plate
with the thickness of 6.25mm. The center frequency
of the excited signals was 0.5 MHz and the angle
of incident angle was 60 degrees. Pitch-catch and
pulse-echo method (transducer spacing:24 inches)
were used for the analysis of the characteristics of
excited guided waves. The excitation signals were
made by a tone burst system (Ritec Ram 10000)
that could control signal duration and frequency.
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Therefore, the center of excitation bandwidth of
phase velocity was between A0 and SO at the fd
value of 0.5 MHz.

Once the experimental data are saved on a
workstation with sampling rate 6.35 MHz, the
signal processing procedure follows. It is important
to window the signals before applying the Fourier
transform. In this paper a Hanning window gives
best results. However, the maximum of the
Hanning window is at the half of the input
sequence length of the signal, whereas the
interesting part of the signal might not be at the
same place as the maximum of the Hanning
window. Therefore by using a common Hanning
window, the interesting part of the signal may be
reduced in amplitude whereas the less interesting
part of the signal may be unchanged. To avoid this
problem, zeros are added at the beginning or the
end of the signal in order to shift the interesting
part of the signal to the corresponding maximum of
‘the Hanning window. The signals arc then
transformed into the frequency domain using the
fast Fourier transform(FFT). The discrete form of
Eq. 5 leads to the wavelet domain of the four
signals. The parameters used in this transform are

a=2"" and b=nAt (13)

where m and n are intergers. Newland [13]
suggested the use of the wavelet transform starting
in the time domain, transforming into the frequency
domain, and finally transforming into the wavelet
domain. This is preferred against  direct
transformation of the time-domain signal into the
wavelet domain as shown in Eq. (1). The
advantage is a savings in computational time by
about two orders of magnitude. Figure 2 is an
example of the 3-D plot of the magnitude of the
wavelet transform of guided wave signal. The
maximum of the plot can be easily seen, figure 3
shows the contour plot of the time-frequency

analysis using the wavelet transform of guided
wave signal. As metioned before, each peak in
figure 3 represents the arrival time of a guided
wave traveling with the group velocity. According
to such a plot, the traveling time of corresponding
wave mode between two points can be obtained for
each value f=1/a. Since the distance between two
measuring points is known, the group velocity can
be identified at each frequency by Eq. (13).

Magnitude

Time b 10 ogy 8

Figure 2 3-D plot of the wavelet transform of

Lamb wave signal

500 1000 1500 2000 2500 3000

Figure 3 Contour plot of the wavelet transform

of Lamb wave signal

4. RESULTS AND DISCUSSION

Guided wave modes and their dispersive

characteristics can be obtained by solving wave
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equation with proper boundary conditions The result
of frequency analysis using the wavelet transform
of guided waves excited by an angle transducer is
shown in figure 4. The guided wave signals in
time domain indicate that the waves are dispersive
and may be superposed by multi-modes. The
wavelet transform analysis reveals the patterns of
dispersion that is closely related with the group
velocity dispersion curves obtained by theoretical
calculations. The mode identification was performed
by the comparison of the patterns of dispersion. It
was revealed that two different mode groups were
propagating and the mode group containing A0 and
SO0 modes were dominant. And the group velocity
at 0.5 MHz was of A0 mode = 3.21 mm/usec, SO
mode = 2.53 mm/usec. From the comparison of the
dispersive patterns obtained from both the wavelet
transform and theoretical dispersion diagram, the
compact packet mode and the widespread mode
were identified as AQ0 and SO modes, respectively.
And, the wavelet transform can feasible to
identifying not only modes but also the frequency
bandwidth of each mode. The shaded areas in
figure 4 (b) represent the guided wave modes
identified in dispersion curves. These results agreed
with the theoretical expectation for the given
excitation conditions.

Lamb-wave RF-Signal

Ampiitude (V]

6 18 2 22 24 26 28 3 32
“ Time [sec] x10

e 2 3 4 5 6 7 8
f'd [MHz"mm]

Group velocty for stesl piate

......

Group velochy, Cg (kmaec)

Figure 4 Guided wave mode identification by
wavelet transform

5. CONCLUSIONS

The application of the wavelet transform to the
time-frequency  analysis  of  guided waves
propagating in a dispersive medium has been
presented. It was found that the wavelet transform
using the Gabor wavelet was an effective tool for
the experimental analysis of dispersive waves in
steel plate. The arrival times of each frequency
component needed in the group velocity calculation
could be determined from the peak of the
magnitude of wavelet transform data on the
time-frequency domain.

And,  experimental
identification is carried out in a steel plate using

guided wave  mode

time-frequency analysis methods such as wavelet
transform. The results are compared with
theoretically calculated group velocity dispersion
curves. The results are in good agreement with
analytical predictions and show the effectiveness of
using the wavelet transform method to identify and
measure the amplitudes of individual guided wave

modes.
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