Indexing of 3D Terrain Space
for Predicting Collisions with Moving Objects

Wanchun Wu®

Youngduk Seo Bonghee Hong

{mcoh, ydseo, bhhong}@pusan.ac.kr
Dept. of Computer Engineering, Pusan National University

Abstract

In this paper, to find probable collision positions between moving object and terrain in 3D
space efficiently, we use a model, similar to Ray Tracing, which finds the triangles intersected
by a directed line segment from a large amount of triangles. We try to reduce dead space as
much as possible to find candidate triangles intersected by a directed line segment than
previous work's. A new modified octree, LBV-Octree(Least Bounding Voxel Octree), is
proposed, and we have a ray tracing with it. In the experiment, ray tracing with LBV-Octree
provides 5%~11% better performance than with classical octree,

Keywords: Triangular Irregular Network, Ray Tracing, octree, Least Bounding Voxel

1. Introduction

In 3D GIS (Geographic Information System), there are
many moving objects, as cars, airplanes etc, and
motionless objects, as buildings, mountains etc.
There are maybe many collisions to happen between
them; these coliisions can be classified into two
groups. One is collisions between moving objects,
and the other is between moving objects and
motionless objects. A good navigation system should
find the coming coltision fast to avoid these kinds of
collisions happening whenever. In this paper, we only
study collisions between moving objects and
motionless objects, especially collisions between
airplane and terrain around it in 3D space.

We can have a query "find the coming collision
position of a flying airplane and mountains around it
during next 1 minute". In the figure 1, to is current
time when airplane starts to predict, t, is predicted
time, and t, is collision time. When to < t; £ t; the
airplane will collide with mountain, then we need
change the flying path, or do other operations before
collision will happen. Otherwise it will be a disaster, if
we can not predict the coming collision to happen at
time ty,

In general, there are two methods that predict the
coming collision, hardware method and software
_method. First is hardware method which mainly
means radars and their relevant equipments which

I
|
|
! L

1) Y t t
Now Collision Time Predicted Time
Figure 1. Relation between flying airplane and
mountain

are usually set in the airplanes and contro! centers,
but there are some defects with it, 1) it depends on
the strength of the objects' signal, 2) it can hardly
find the objects which are far and lay low, 3) it can
also hardly find the objects if there are
electromagnetic interferences. Second is software
method, it can overcome these problems, but it has a
prerequisite that there are databases which store the
terrain information around the air plane. For the
defects of radar, we concentrate on proposing a new
software approach that can find the probable coming
collision positions of the air plane and mountains
around it efficiently, but not doing further refinement.

As usual, we assume moving object as point. We
assume the object will not change its direction and
velocity when it is moving from now to predicted

159

time, then we can easily get any future position to
pass with simple computation x = xo + v{t — to) (xo: a
vector of now position: v: a vector of velocity; x: a
vector of predicted position; to: now time). And for
collision only happens on the surface of terrain, only
the surface information is enough. The surface of
terrain is usually sampled as distributed random
points (under an assumption that the terrain has no
perpendicular slopes and overhangs), with these
sampled points, the surface can be presented with
TIN (Triangular Irregular Network). Then surface of 3D
terrain is presented with composition of a large
amount of triangles. So collision between a flying
airplane and terrain becomes intersection between a
directed line segment and a large amount of
triangles. It is mostly similar to Ray Tracing, only a
little difference from ours is that we use a directed
line segment, but not a ray.

When the surface of the terrain is represented
with a large amount of triangles, to reduce fault hit,
reduction of dead space is needed. We propose a
new modified octree, LBV-Octree (Least Bounding
Voxel Octree). In a word, the goal is to reduce dead
space in the voxel by giving a bounding box (LBV) to
every voxel. And to find the candidate triangles more
efficiently we distinguish the empty nodes which are
marked with “interior" or "exterior". When the given
directed line segment meets the "interior", it means
some triangle has already intersected by the given
line segment, so candidates selecting can be
stopped.

The remainder of the paper is organized as
follows. Section 2 presents a short overview on
related work. Section 3 describes our modified
octree, LBV-Octree, which can find intersection
between a directed line segment and a large amount
of triangles in 3D efficiently, and a ray tracing
algorithm with LBV~Octree is given. Section 4 shows
an experiment result of comparing LBV-Octree with
octree and discusses it. Last section gives a
conclusion and future work.

2. Related Work

Ray tracing (or ray shooting) is mostly widely used in
Computer Graphics. Ray Tracing is one of the most
realistic methods of generating computer images. It
can generate shadows, reflections and refraction.

To perform a ray tracing, one way is spatial
subdivision, it can be broadly categorized into
bounding volume hierarchies and voxel based
structures. Bounding volume hierarchies create a tree
that the bounding volume of node encloses the
bounding volumes of its children and the bounding of

a leaf encloses primitives. It needs less disk space to
save objects, but there are maybe many overlaps
between MBBs. Voxel based structures are either
grids or a hierarchy structure octree. With this
method, there is no overlap between voxels, but more
disk space is need to save objects duplicate.
Recently there are many octree based ray tracing
researches.

Classical octree is a tree structure to index three
dimensions, it is based on quadtree which extends to
three dimensions, and each voxel has either eight
children or no children.

Another way to improve ray tracing is efficient
algorithms. For octree traversing, it is also mainly
categorized into two methods, top—down methods
and bottom-up methods. With top—down methods,
we start from the root voxel, and obtain its
descendants intersected by the ray repeatedly. With
bottom-up methods, the first voxel, which is
intersected by the ray, is selected first, and then
process neighbor finding.

In previous work [11, the objects are divided into
many voxels with octree that divide space with spatial
median, and an algorithm is given which uses a nine
parameter set to compute which voxel is pierced first,
then perform a neighbor finding repeatedly.

[2] introduces an octree—variant which divided
space with the plane minimizing the number of
ray—object intersection tests with cost model.
Because it considered the objects' distribution, it
gains better performance when the data are more
skewed.

3. Ray Tracing with LBV—-Octree

There are some important aspects to consider for
reduction of number of disk 1/O, 1) to reduce overlap
between MBB of objects, 2) to reduce dead space.

When surface of the terrain is represent with a
large amount of triangles. One important character
with ‘it is that all triangles composed of surface of
terrain are adjacent each other, the other is that all
mountains are cone—shaped under our assumption.
When the space is divided, a serious problem is that
there are many overlaps if we use bounding volume
hierarchies, or there is much dead space if we use
grid or octree. Both of results are that more disk I/O
is needed when we perform a ray tracing.

To solve this problem, we use an index based on
classic octree. Our main idea is that we give every
voxel{non—terminal or terminal voxel) a bounding
box(i.e. LBV) to reduce dead space, and divide the
LBV into 8 children with its spatial median if
necessary until all criterion are satisfied, and mark

160

empty voxels with "interior” or "exterior".

LBV (Least Bounding Voxel) is a minimal
bounding box that encloses all internal parts of all
objects which are in the voxel partly or wholly. In the
figure 2, gray rectangle is an LBV, and it must not be
larger than original voxel.

Original Voxel

figure 2. Comparison with LBV and Original Voxel

3.1 LBV-Octree

LBV-Octree stands for Least Bounding Voxel
Octree. First, we give a comparison between octree
and LBV-Octree, see figure 3 and 4. The surface of
terrain is represented with a polygon, and the cell's
capacity is 4, then to obtain the candidate cells
intersected by the line segment, we will have disk I/O
4 times and 2 times respectively.

HEBR
Lellele] Lo fele] [ole]e]e]

Figure 4. polygon divided with LBV-Octree and its
index

A significant difference between classical octree
and LBV-Octree is their division. In octree, the voxe!
will be divided into 8 children regardless of
distribution of data and dead space. But in
LBV-Octree, we divide LBV into 8 children. As a
result, composition of all leaf nodes of LBV-Octree is
more similar to object's surface than that of octree in

shape.

Construction of an LBV-Octree is a little trivial,
because we divide the LBV. We can not determine
the LBV of any voxel before all triangles are inserted
into the voxel. All triangles have to be inserted into
each voxel that intersects triangles. Once all triangles
have been inserted, we will determine the LBV of
each voxel. If there are some voxels that needs to be
divided, then these operations are repeatedly until no
voxels need division further.

After the frame of index has been constructed, all
triangles will be inserted.

For we only need to obtain the first intersected
triangle, we modify the index some little. All empty
nodes are marked with different states. One is
"interior" which shows inside of the object, and the
other is "exterior" which shows outside of the object.
Steps of construction of LBV-Octree are:

step 1. insert all triangles to leaf nodes, only save
the LBV and count of triangles inserted into each leaf
node

step 2. judge whether some leaf nodes need to
be divided, if so then divide them

step 3. clear count in the leaf nodes

step 4. if there are leaf nodes that have been
divided then go to step 1

step 5. insert all triangles to leaf nodes

step 6. reset the LBVs of the voxel entries, and
set empty voxel entries with "interior" or "exterior".

3.2 Ray Tracing

Algorithm of Ray tracing with LBV-Octree is partly
same as that of previous ray tracing. We present an
algorithm satisfied with our LBV-0Octree. The steps of
ray tracing are:

step 1. clear queue, and push the root node into
stack

step 2. if the stack is empty then go to step 4,
popup the uppermost one, if it is "interior" then go to
step 4, otherwise calculate its sub—nodes which the
LS will intersect and sort them by time ascending

step 3. push nodes that are leaf nodes into
qgueue until meets non-leaf node, and push left
nodes into stack on the contrary sequence, go to
step 2

step 4. elements in the queue are the final
candidates.

4. Experiment

Both classical octree and our proposed LBV-Octree
have been implemented in C, and simulated data of

161

surface of terrain is obtained like that in the figure 5.
The range of the terrain is (0, 20000) x (0, 10000) x
(0, 1000), and we sampled 5 groups of different
points, and obtained triangles created with Delaunay
Triangulation with the sampled points, the sampied
points are 5000, 10000, 25000, 50000, 100000, and
triangles are 9943, 19939, 49902, 99883, 199866
respectively.

Figure 5. Surface of simulated mountain

For simplicity of implement, an LBV is determine
with the MBB of triangles and voxel, but not triangle
itself and voxel, so LBV in our experiment is some
larger than that is determined with our idea.

We have compared classical octree with LBV-
Octree in finding the probable intersected triangles by
a given directed line segment. With different data, we
obtained similar result of candidate triangles with
both index, but got better result of disk I/O with latter
than with former. Because we reduce some dead
space in LBV-Octree, candidate leaf nodes of
LBV-Octree are fewer than that of octree, i.e. the
former needs fewer disk I/O than the latter, see figure
6. And for a leaf node in LBV-Octree contains more
triangles than that in Octree, total candidate triangles
of LBV-Octree are similar equal to that of octree, see
figure 7.

Page Size : 8192

—e—Octree g LBV-Octree }

60
50
40
30
20
10

Disk 1/0

49902

Triangles

9943 19939 99883 199866

Figure 6. Disk 1/0 of octree and LBV-Octree

Page Size ; 8192
F—'Q—ochee -—l——-LBV-Octnee]
!i';', 1200
g 1080 /J_
= 960
2 e - <
.'é 720 P =
§ eoo_____.':,‘:r/ r
9943 19939 49902 99883 199866
Triangles

Figure 7. Candidate Triangles of octree and LBV-
Octree

From other more experiments with different page
size, we also got the same result. A conclusion is that
LBV-Octree obtains better performance than octree
with the same disk page size in ray tracing when
there are a large amount of triangles.

5. Conclusion and Future Work

In this paper we propose a new modified octree,
Least Bounding Voxel Octree, which is given each
voxel an LBV. We divide LBV if it needs division, but
not divide original voxel. We reduce disk /O by
reducing dead space, and we mark empty nodes with
"interior" or "exterior", and find candidates faster than
previous work's. In experiments we gain 5% ~ 11%
better performances than with classical octree in
finding first intersection between a directed line
segment and a large amount of triangles.

It needs to take a long time to construct an
LBV-Octree than octree, but the motionless objects
seldom change their position or their shape, so we
can construct it only once. It will not be a serious
problem in ray tracing.

We will do more experiments, comparing octree
with LBV-Octree. And we wil improve the
construction algorithm of LBV—0Octree in the future.

Reference

[1] J. Revelles, C. Urena, M. Lastra. An Efficient
Parametric Algorithm for Octree Traversal.
WSCG'2000 conference, pp. 212-219, 2000

[2] Kyu-Young Whang, Ju-Won Song, Ji-Woong
Chang, Ji-Yun Kim, Wan-Sup Cho, Chong—-Mok Park,
lI-Yeol Song, Octree-AR: An Adaptive Octree for
Efficient Ray Tracing, |EEE Transactions on
Visualization and Computer Graphics 1(4): pp.
343-349, 1995 v '

162

