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Abstract: Refraction tomography requires an algorithm for efficiently computing the traveltimes and their Fréchet
derivatives. We have attempted to solve the damped wavefield using the frequency domain finite element model-
ing and then invoked the reciprocity theorem to calculate the Fréchet derivative of the traveltime with respect to
the subsurface parameter. Then, we used a damped least square method to invert the traveltimes of the Marmousi-
2 model. Numerical tests demonstrate that the refraction tomography with large aperture data can be used to esti-
mate the smooth velocity model for the prestack depth migration.

1. Introduction

Refraction survey was originally used to investigate the deep structure of the earth by seismologists in the early
twentieth century. Following that, geophysicists were successful in delineating the shallow salt body for oil explo-
ration. With the enhancement of the relevant techniques and the equipments used in conducting reflection survey,
such surveying method began to replace refraction survey. Because of the depth penetrating resolution of refracted
waves due to limited offset distance from a source to receivers in the reflection seismic survey, refraction survey
has been mainly employed to investigate the structure of the shallow subsurface for static correction.

Hampson and Russell(1984) used refraction tomography to compute a multi-layer near-surface model, though
the velocity in the weathering layer was assumed to be known. Docherty(1992) have investigated the feasibility of
extracting both weathering thickness and velocity information simultaneously, while Landa et al.(1995) have esti-
mated the velocity-depth model by applying the coherence method for the estimation of the shallow subsurface.
Landa et al.(1995) have inverted the velocity-depth medel in the direction that the semblance coherence could be
maximized. Shin et al.(1999) parameterised the subsurface model in blocky and arbitrary shaped layers, and in-
verted for the velocities and interface coordinates of the geologic model by calculating the Fréchet derivatives of
the velocity and the interface coordinate of the blocks.

In this paper, we have proposed a new method for obtaining traveltime and Fréchet derivative by using the mono-
chromatic damped wave solution. For calculating the derivative of the traveltime with respect to the velocity parameter,
we exploited the source-receiver reciprocity as Shin et al.(2001) did using the frequency domain modeling technique.

To our knowledge, there has been little study on the issue that the velocity-depth model derived from refraction
tomography was used for Kirchhoff prestack depth migration. In this paper, we have applied refraction tomography
to Marmousi-2 model(Martin et al., 2002) and built the velocity model that can be used for the initial model of

prestack depth migration. The migrated images demonstrate that we can obtain the velocity-depth model suitable
for the migration by using the refraction tomography.

2. Theory
Calculation of traveltime and its Fréchet derivative

Shin et al.(2003) introduced a new algorithm for computing the first arrival traveltime by modifying an existing
frequency domain modeling technique. Before discussing how to apply their algorithm, we will briefly review their
algorithm. When solving the wave equation by using the time domain finite-element method, we need to solve the
discretized matrix equation given as

Mii+Ku=f (D

where M is the mass matrix, K is the stiffness matrix, u is the solution vector, ii is the second order partial de-
rivative of the solution vector with respect to time, and f is the source vector(Marfurt, 1984).
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In the temporal Fourier domain, we can rewrite equation (1) as

Si=f 2
where S is the complex impedance matrix expressed as
S=K-o’M 3)

and ii(w) and f(w) are the Fourier transforms of u(?) and f(z), expressed as

@)= [ u@e™dt @

and

f(@)= [ f@)e™ar. )

In order to obtain the frequency domain wave solution i, we factor the impedance matrix S into upper and lower
triangular matrices. Then we obtain the frequency domain wave solution @ by forward and backward substitutions.

In the frequency domain modeling, we often use the complex angular frequency @ to suppress the wrap around
effects. '

w=0" +ia (6)

where @" is the real angular frequency and « is the wrap around suppression factor. The resulting wavefield in

the time domain is equivalent to the wavefield damped by & * . By choosing the optimum wrap around suppres-
sion factor(Shin et al., 2003), we were able to suppress all the energy following the first arrival and obtain a
damped spike.

The damped spike-shaped wavefield is expressed as (Shin et al., 2003)

u(x,y,z,t)= A(x,y,2)e 5@ —1(x,y,2)) )

where u(x, y,z,t) is the wavefield in the time domain, 7(x, y,z) is the traveltime from the source to a depth point

in the subsurface, A(x, y,z) is the amplitude at the depth point in the subsurface, and & is the Dirac delta function
In the frequency domain, we can express equation (7) as

ﬁ(x, ¥, Z,t) — Ae—ar(x,y,z)eia)"r(x,y,z) (8)
By taking the logarithm of both sides of equation (8)

Inii(x, y,2,0) = In|de"" 2|+ i0'z(x, y,2) ©)

Dividing the imaginary component of equation (9) by the real angular frequency @ results in obtaining the
traveltime 7(x, y,z) at each depth point.

By following Shin et al.(2001)’s approach, we calculate the Fréchet derivative wavefield efficiently by applying
source-receiver reciprocity to the damped wave equation in the frequency domain and use it for the calculation of
the Fréchet derivative of the traveltime of the first arrival event. To proceed, we modify equation (8) as

i, (@) = A, e (19)
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i=12,---,mr; j=12,---,ns

where i denotes the receiver number, j denotes the shot number, nr is the number of receivers and ns is the
number of shots. Following Shin et al.(2001)'s notation, we parameterise our subsurface by an N =N _x N ele-
ments, where N is the number of elements in the x-direction and N, is the number of elements in the z-direction.
We, then, identify the velocity at each element. By doing so, we can define our unknown model parameter vector
p to be p=[v,v,,*-,v,,---,v,]. Then, the wavefield can be expressed as a function of the velocity parame-

ter(Shin, 1988). Thus, we differentiate #, ; with respect to the subsurface velocity parameter p; to obtain the Fre-
chet derivative wavefield and express it as

aﬁ,‘ ; aAl PR /47 —ar ( ) aTi j it A) —-ar, , iot; ; ( ) aT[ J (I ])
S = L TN L g e (- e "4+ 4 e Ve V(o ’
_apl ap[ \J ap[ »/ ap 1

i=12,--,nr; j=12,---,n5;[=1,2,---,N.

In this stage, we already computed the Fréchet derivative using the reciprocity theorem. Then we continue to use it
for the calculation of the Fréchet derivative of the traveltime. Dividing both sides of equation (11) by equation (10)
and rearranging it give

Od. . o4, . or. . or.
Lo 1 Ay 0% i O (12)
U; op, Ai,j op, op, ap,

i=1,2,~..’n7"; j:l’z,.‘..,ns; l=1’2’...,N.

or, ; ,

Note that the imaginary part of equation (12) is 5 =2 multiplied by w . By dividing the partial derivative wave-
P

field by the forward modeled wavefield (note that we already computed the Fréchet derivative wavefield using the

reciprocity theorem), we can exiract the Fréchet derivative of the first arrival traveltime with respect to the subsur-
face velocity parameter.

Inversion theory

In the refraction tomography, we update the velocity model by minimizing the L, -norm of residual errors be-
tween the first arrival traveltimes of the real data and those of the numerical modeling. The residual error of the

traveltime at the n receiver point, At is defined as the difference between the observed traveltime and that of the
numerical model. The residual error can be defined as

At =(7,); ;= (@), (13)
i=1,2,---,nr; j=12,---,ns

where the subscript denotes the individual components of At, T, and 7, the subscript / represents the receiver
number and the subscript j represents the shot number. As is common in many inverse problems, the L, -norm

misfit function with respect to the velocity parameter p, is defined as

E(p)= -;—ATtAT (14)
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where the superscript t is the transpose.

In general, we can minimize the object function in three different ways (Lines and Treitel, 1984), namely full
Newton method, Gauss-Newton method and the steepest descent method. All of these methods require Fréchet de-
rivative to be obtained, either directly or indirectly. In this paper, we choose the steepest descent method. In the
steepest descent method, we update a velocity model by following a general iterative rule

p* = p® _ a""Vp E® (15)
where
vV E® =2€=J‘A‘r (16)
14 ap

where £ is an iteration number, V E ® is the steepest descent direction perpendicular to the objective function at
the k -th iteration and & is a step length. In equation (16), At is the (nsxnr)x1 column vector and the matrix

J' is the transpose of the (nsxnr)x N Jacobian matrix. Since T, is not function of the parameter p,, the ele-
ments of Jacobian matrix are given by

J o) a7
(G=Dxnr+il — apl

i=1,2,,nr; j=12,,ns;1=12,--,N

where the subscript i and j represents the receiver number and the shot number, respectively, and the subscript /
represents the parameter number.

Now, we need to determine ¢ to minimize the L, -norm in the direction given by the steepest descent direction,

V,E ® _ Using the Gauss-Newton or full Newton method, we can obtain the step length by inverting the full Hes-

sian or an approximate Hessian and multiplying the steepest descent direction by the inverse of the Hessian. How-
ever, the computation of the Hessian is a formidable task for even a modern high-tech computer to handle if the
number of the unknowns is increased. Furthermore, calculating an inverse of the huge Hessian is also prohibitively
expensive(Shin et al. 2001).

Hence, we regularize the steepest descent direction by diagonal approximation of the Hessian. Due to the ill-
posedness of the Hessian matrix, we apply a diagonally damped least squares method described by Shin et
al.(2001).

3. Results

Verification of Fréchet derivative :

To verify the derivative of the traveltime using our algorithm, we have compared the analytically calculated Fré-
chet derivative with the numerically calculated Fréchet derivative (Lines and Treitel, 1983). By the finite difference
formula, the variation of traveltime 7, with respect to the parameter p; is expressed by

; 0n _np+8p)-7(p, ~Ap;)
" op; 2Ap;

(18)

The velocity model chosen for verifying Fréchet derivative is shown in Figure 1. The size of this model is Skm in
horizontal distance and 0.5km in depth. The velocity of the model is 2kmy/s. For the calculation of the Fréchet de-
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rivative, we subdivide the model into 500x50 elements whose grid size is 10m. We then perturb the element at
0.1km depth point in the middle of the model and measure all traveltimes along the surface.

Figures 2(a), (b), and (c) show the analytic Fréchet derivative and the finite difference Fréchet derivative where
the shot position is located at 1.5km, 2.5km, 4.5km, respectively. We note that all the Fréchet derivatives agree
with one another almost perfectly.
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Figure 2. Comparison between the analytic Fréchet derivative and the numerical Fréchet derivative where the shot is located
at (a) 1.5km, (b) 2.5km, (c) 4.5km, respectively.

An isolated block embedded in the two-layered model

To calibrate our algorithm, we have inverted an isolated block embedded in the two-layered model. Figure 3(a)
shows the true model. The velocity of the first layer is 1.5km/s, the velocity of the second layer is 4.5km/s and the
velocity of the block in the middle is 3kmy/s. The size of this model is 3km in horizontal distance and 0.5km in
depth. The initial model is the linearly increasing velocity model with a depth ranging from 1.5km/s to 3.5km/s, as
shown in Figure 3(b). We subdivide the velocity model into 301x51 elements. Three hundred and one receivers are
placed on the surface at 10m intervals.

Figure 3(c) displays the inverted model at 600-th iteration. From Figure 3(c), we note that the inverted velocity
model converges to the true model. Figure 4(a) shows the rms error of the traveltime, which reaches up to 10% of
the initial error at 200 iterations and to about 1.7% at 600 iterations.
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Figure 3. (a) An isolated block embedded in the two-layered model, (b) the initial model for the inversion and (c) the last in-
verted model.
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Figure 4. An isolated block embedded in the two-layered model : (a) The history of RMS error of our inversion results and
(b) the traveltime curves of the true model, the initial model and the last inverted model.

Marmousi-2 model

Having finished a successful inversion of the simple model, we proceed to invert the traveltimes generated for
Marmousi-2 model(Martin et al., 2002). Figure 5(a) shows the P-wave velocity-depth model of Marmousi-2 model.
For simplicity, we peeled off a layer of water of Marmousi-2 model. The horizontal distance of this model was
17km and the depth, 3km. The lowest velocity was 1.028 km/s mainly in the gas charged sand channel and gas
sand trap and the maximum velocity is 4.7km/s in the salt layer. The initial model for inverting Marmousi-2 model
is shown in Figure 5(b). The velocity of the surface is 1.5km/s and the velocity is seen to increase linearly as the
depth increases. The velocity at 3km in depth is 4.5km/s. Eight hundred and fifty one shots are located on the sur-
face at intervals of 20m. The same number of receivers for each shot are located on the surface at 20m intervals.

Figure 5(c) shows the inversion result at 200-th iteration. The faults at the middle of the model are vaguely de-
fined but the structure of the shallow subsurface approximates to the true model. Figure 6(a) shows the rms error of
the traveltime for Marmousi-2 model. The rms error of the traveltime decreases by about 6.6% of the initial error at
200 iterations. Figure 6(b) represents the traveltime curves for the true, the initial and the last inverted model, re-
spectively, where the shot position is located at 2km, 8.5km, and 15km. The traveltime curve obtained from the last
inverted model shows good agreement with those obtained from the true model.

To verify whether the inverted velocity-depth model can be used for smooth velocity model for the prestack
depth migration, we applied Kirchhoff prestack depth migration using the most energetic traveltime(Shin et al,
2003) for the Marmousi model. Figures 7(a), (b), and (c¢) show the Kirchhoff migrated images by using the true, the
initial and the last inverted velocity model, respectively. We note that the image migrated using the inverted veloc-
ity model is improved much more than the image using the initial velocity model. Especially, the depth of the left
part is observed to have improved considerably, the outline of the faults in the middle is well defined and the conti-
nuity of the anticline in deeper area is enhanced.
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Figure 5. (a) Marmousi-2 model, (b) the initial model for the inversion and (c) the last inverted model.
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Figure .6 Marmousi-2 model : (a) The history of RMS error of our inversion result and (b) the traveltime curves of the true
model, the initial model and the last inverted model.
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Figure 7. Kirchhoff prestack depth images for the Marmousi-2 model by using the most energetic traveltime calculated from
(a) the true model, (b) the initial model and (c) the last inverted model.
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4. Conclusions

By combining the damped wave solution in frequency domain with the reciprocity theorem of wave equation, we
proposed a new technique for calculating the traveltimes and their Fréchet derivatives with respect to the subsur-
face parameter such as velocity. Our algorithm enables us to construct the diagonal elements of the approximate
Hessian, thereby allowing us to obtain a better-scaled step length than the steepest descent direction without any
regularization.

Instead of showing examples of the inversion of the traveltimes for the shallow subsurface, we applied our algo-
rithm to Marmousi-2 model to obtain the smooth velocity model for the prestack depth migration. In our test, we
assumed that we could locate shots and receivers at every grid point on the surface. Through our numerical test of
Marmousi-2 model, the refraction tomography with large aperture data can be used to build the smooth velocity
model for the prestack Kirchhoff migration as well as to obtain the velocity model of the shallow subsurface.

The extension of our algorithm to calculation of Fréchet derivative of the absolute amplitude of the first arrival
event is straightforward, thus allowing us to include the amplitude term in the refraction tomography. With the im-
plementation to the amplitude term to the refraction tomography, we believe that we can extend our algorithm to
transmission tomography without any difficulty.
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