Operative Treatment of Throwing Injury

Seung-Ho Kim, MD

Associate Professor of Orthopaedic Surgery Sungkyunkwan University School of Medicine

Samsung Medical Center Seoul, Korea

Goal of This Presentation

- To understand common throwing injuries
- To discuss current treatments of throwing injuries

Throwing Motion

- Significant forces across the shoulder
- Injuries to rotator cuff, labrum, capsules
- Overuse produces throwing injuries

Throwing Injuries

- Over External Rotation of GH joint (Late cocking phase)
- Over Internal Rotation (Follow-through phase)
- Over Elevation (Overhead motion)

Throwing Injuries

- Over External Rotation of GH joint (Late cocking phase)
 - Stretching of the anterior capsule-labrum
 - Anterior instability
 - · Posterosuperior contact of cuff-labrum
 - Internal impingement
 - SLAP lesion

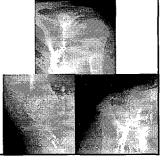
Throwing Injuries

- Over Internal Rotation (Follow-through phase)
 - · Stretching of the posterior capsule-labrum
 - Posterior instability
 - Bennett's lesion (thrower's exostosis)
 - · Eccentric overload of posterior cuff
 - Rotator cuff tendinosis
 - ASPTRCT
 - FTRCT
 - Anterosuperior impingement
 - Subscapularis tear

Throwing Injuries

- Over Elevation (Overhead motion)
 - · Subacromial impingement
 - BSPTRCT
 - FTRCT
 - · AC arthritis

Evaluation


- Repeat history
- Repeat physical examination
- Ancillary tests, useful

Clinical Evaluation

- Chief complaint
- Mechanism of injury
- Involved sports, position, and duration
- Prior treatment
- Symptoms
 - · Pain: duration, location, initiating position
 - Weakness
 - Instability
 - · Mechanical symptoms
 - · Loss of motion
 - · Neurologic deficit

Standard Radiographic Evaluation

- Plain radiographs
 - · AP
 - Axillary
 - Arch
 - · Stryker-notch (prn)

Ancillary Tests

- MR-arthrogram
- CT-arthrogram
- EMG
- Isokinetic testing

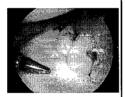
Anterior Instability of Throwing Athletes

- Repeated stretching-overload to anterior capsule-labrum
- Different from single major traumatic instability
- Over-rotation phenomenon
 - · Incomplete labral tear by "peel-off"
 - Commonly extend to inferiorly and posteriorly
 - · Capsular laxity

Anterior Instability of Throwing Athletes

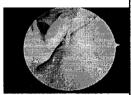
- Physical sign, subtle
 - Fulcrum test, no gross apprehension
 - · Pain, more common
 - Often overlap signs of SLAP / rotator cuff injuries
- MR-arthrogram, of value

Anterior Instability of Throwing Athletes


Surgical Treatment

- Goals
 - · Stable shoulder
 - · Maintenance of external rotation
 - Velocity of throwing

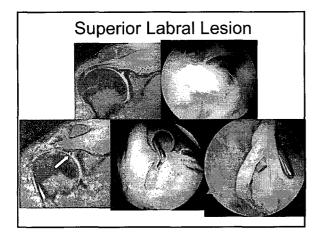
Anterior Instability of Throwing Athletes


Surgical Treatment

- Open repair / capsular shift
- Arthroscopic repair
 - · Suture anchors
- Appropriate capsular tensioning

Internal Impingement

- Impingement of the deep surface of the infraspinatus on the posterosuperior glenoid rim
- Gilles Walch



Internal Impingement

- Surgical treatment
 - · Arthroscopic debridement
 - · Repair of SLAP lesion
 - Thermal-assisted capsular shrinkage (Andrews JR)

Superior Labral Lesion

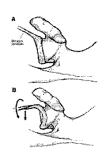
- Andrews JR in throwing pitchers
- Snyder SJ, SLAP lesion
- 4 classic types
 - · Type I: fraying
 - · Type II: loss of biceps anchor
 - · Type III: bucket-handle tear
 - · Type IV: bucket handle extending to biceps tendon
- Associated with PTRCT, instability
- Isolated SLAP, uncommon



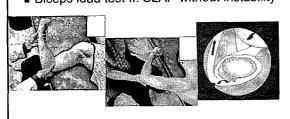
Superior Labral Lesion

- Injury mechanism
 - Outstretching injury: Snyder SJ, Classic
 - · Traction Maffet MW
 - · External rotation: Kim SH
- Diagnostic Tests
 - · Compression-rotation test
 - · Crank test
 - · Anterior slide test
 - O'Brien test / Active compression test
 - · Biceps tension test
 - · SLAPprehension test
 - · Bicep load test I & II

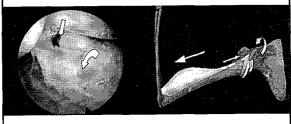
SLAP as a Cause of the Dead Arm


■ Type 2 SLAP

 A/S repair returned 87% of these athletes to the preinjury level of performance and velocity


SLAP as a Cause of the Dead Arm

 The most common pathologic entities associated with the Dead Arm


Diagnosis of Type II SLAP

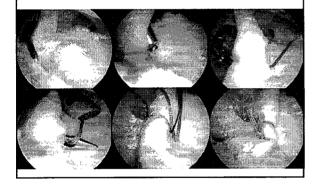
- Biceps load test I: SLAP in anterior instability
- Biceps load test II: SLAP without instability

Mechanism of BLT

Abd-ER Shearing of superior labrum-glenoid

Arthroscopic Repair

- Anterior SLAP:
 Anchor through antero-superior portal
- Posterior SLAP:
 - · Anchor through postero-lateral portal
 - · (Port of Wilmington: Morgan CD)
 - Punch-pivoting technique (Anterior approach: Kim S-H)



Arthroscopic Treatment

- Debridement:
 - Cordasco: success rate 78% → 63%
- Repair
 - · Staple: Yoneda
 - · Suture: Field and Savoie
 - Tack: PagnaniScrew: Resch
 - · Anchor: Snyder, O'Brien, Kim

Arthroscopic Repair

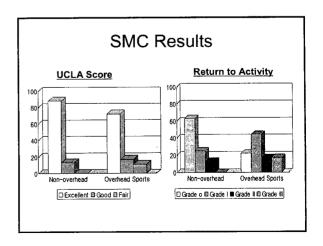
SMC Results

 34 patients with Isolated SLAP Overhead sports: 18 Contact sports: 12 None: 4

■ Age: 26 years (16 – 35 years)

■ F/U: 33 months (24 – 49 months)

Kim SH, JBJS (Am) 2002


SMC Results

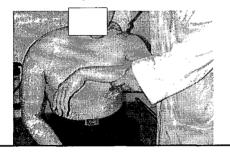
■ UCLA score

Satisfactory: 32 (94%) Unsatisfactory: 2 (6%)

Return to activity: Satisfactory 91%

Kim SH, JBJS (Am) 2002

Posterior Instability


- Unidirectional posterior
- Multidirectional posteroinferior
- Less common than anterior instability
- Often missed
- Diagnosis, important
- Can be associated with SLAP lesion
- Capsular laxity + labral lesion, always

Posterior Instability

- Diagnosis
 - · Pain / instability on overhead motion
 - · Jerk test
 - · Inferior sulcus test
 - · MRI
 - · Arthroscopy

Jerk Test

"Is this your problem?"

Jerk Test Revisited

- 89 shoulders
 - · Painless jerk (Clunk without pain): 54
 - · Painful jerk (Clunk with pain): 35
- Nonoperative treatments (Rehab.)

	Painless Jerk Group (54)	Painful Jerk Group (35)
Successful	50 (90%)	5 (16%)
Failure	4 (7%)	30 (84%)

Jerk Test: A Hallmark of Posterior Labral Lesion

- Painless Clunk (Asymptomatic Jerk)
 - · Rehab, successful
- Painful Clunk (Symptomatic Jerk)
 - · Failure to nonoperative Treatment
 - · Invariably has labral lesion
 - · Early surgery, recommended

Posterior Labral Lesion

- MR Classification: 3 types (Kim)
 - Type I: Separation without displacement
 - Type II: Incomplete avulsion (cystic lesion)
 - · Type III: Loss of contour

Normal appearance < positive Jerk

JBJS (Am) 2003

Posterior Labral Lesion

6 to 9 O'clock (Rt)

Arthroscopic Classification

· Type I: Incomplete stripping · Type II: Marginal crack

· Type III: Chondrolabral erosion

· Type IV: Flap tear

Posterior Labral Lesion


Kim's Arthroscopic Classification

· Type I: Incomplete stripping

· Type II: Marginal crack

· Type III: Chondrolabral erosion

Type IV: Flap tear

Posterior Labral Lesion

Arthroscopic Classification

· Type I: Incomplete stripping

· Type II: Marginal crack

· Type III: Chondrolabral erosion

Type IV: Flap tear

Posterior Labral Lesion

Arthroscopic Classification

· Type I: Incomplete stripping

· Type II: Marginal crack

· Type III: Chondrolabral erosion

· Type IV: Flap tear

Posterior Labral Lesion

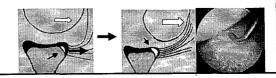
Arthroscopic Classification

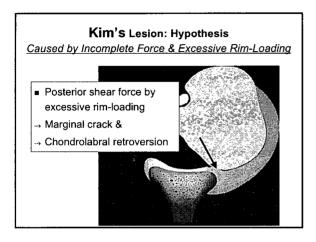
· Type I: Incomplete stripping

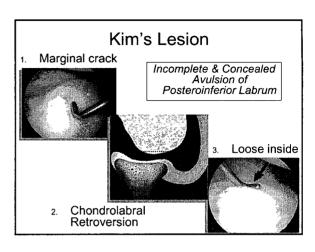
· Type II: Marginal crack

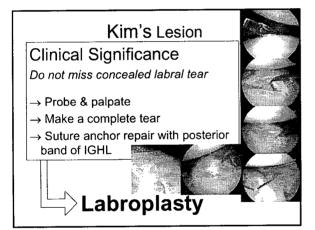
· Type III: Chondrolabral erosion

Type IV: Flap tear


Kim's Lesion: Hypothesis


Caused by Incomplete Force & Excessive Rim-Loading


Normal Capsular Attachment :Inferior wall of labral triangle



- Less severe posterior force
- → Stretch posterior band of IGHL
- → Detach inner portion of posterior labrum
- → Incomplete detachment of labrum, flat labrum



Surgical Technique

Portals

- Posterior: <u>1cm lateral</u> to standard posterior portal
- Anterosuperior portal
- Anterior midglenoid portal

Surgical Technique

- Include posterior band of IGHL
- South-North direction shift
- Re-establish labral bump
- Capsular shift up to biceps root
- Close posterior portal

Traumatic Unidirectional Posterior

- 27 shoulders (25M / 2F) / Age: 21 years (14-33)
- All in sports activity / Trauma: All patients
- 26/27 stable, 1 recurrence
- Shoulder scores

UCLA Excellent 21, Good 5, Fair 1

- 24 (89%) > 90% of activity return
- Pain VAS improved (5 to below zero)
- IR loss < 1 vertebral level

JBJS (Am) August 2003

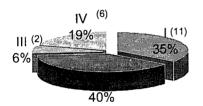
MDI / Posteroinferior Instability

New Thoughts

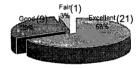
- Capsular redundancy + Labral lesion (≅100%)
- Chondrolabral retroversion
 - · Tear
 - · Kim's lesion
 - Erosion
- Kim procedure: AS Capsulolabroplasty = Posteroinferior labroplasty + Balanced superior shift of the inferior capsule + RI closure

(Am J Sports Med. In-press)

Multidirectional Posteroinferior Instability

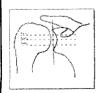

SMC Results

- 31 patients
- Kim procedure:
 - · Capsulolabroplasty
 - · Balanced capsular shift
 - · RI closure
- FU: 51 months (34-68 months)
- Age: 23 years (19-28 years)


(Am J Sports Med. In-press)

Multidirectional Instability SMC Results

17 patients: minor trauma All had posteroinferior labral lesion


Multidirectional Instability Rowe Score



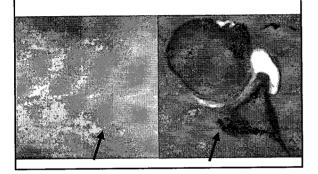
- All stable except one recurrence
- 28 patients (90%) > 90% of activity
- ROM deficit: ER: 2°, IR: 1 vertebral level

Loss of Containment by Chondrolabral Retroversion

- Chondrolabral glenoid version
- Labral height
- Glenoid depth


Chondrolabral Retroversion

Type II and IV lesions


MDI Normal control

7.1° 2.3°

in inferior one-third of glenoid

Bennett's Lesion

Rotator Cuff Injuries in Throwers

- Tensile versus compressive
- Partial-thickness versus full-thickness
- Primary versus secondary

Rotator Cuff Injuries in Throwers

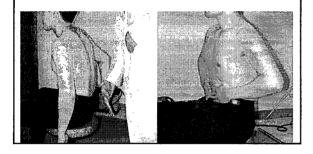
- Tendinosis
 - · Young athletes
 - Overuse
 - · Rehabilitation
- Partial-thickness tears
 - · Articular surface
 - Tensile failure
 - Internal impingement
 - Bursal surface
 - Subacromial impingement

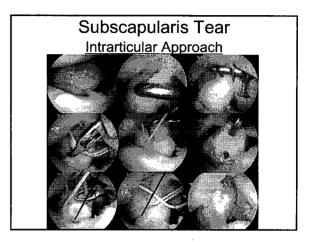
Articular Surface PTRCT

- < 50%: Arthroscopic debridement
- **>** > 50%
 - · Trans-tendon repair
 - · Conversion to full-thickness &repair

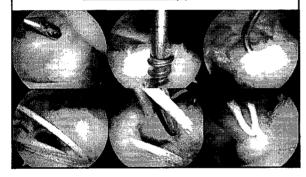

Bursal Surface PTRCT

- Old athletes
- Operative Treatment
 - · Arthroscopic debridement
 - · ASD & acromioplasty
 - · Arthroscopic repair
 - · Mini-open repair

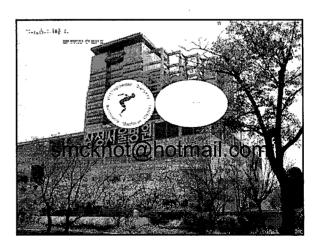



Full-thickness RCT

- AS repair
- Mini-open repair
- Biceps lesion
- SLAP



Subscapularis Tear


Subscapularis Tear Subacromial Approach

Summary

- Operative Treatment of Throwing Injuries
 - · Anterior instability
 - · SLAP lesion
 - · Posterior instability
 - · Rotator cuff disease

