Basic science & injury of tendon & ligament

서울아산병원 정형외과

빈 성일

Basic science of tendon & ligament

Basic anatomy

- 1. Composition of tendon & ligament
- -Histologically, dense, regularly oriented, connective tissue
 - : containing parallel rows of fibroblasts within parallel bundles of collagen fibers
- -The fibroblasts are responsible for secreting the extracellular matrix
- -Ultrastructure of ligament & tendon
 - similar, but fibers of ligament are more variable & have a higher elastin content.
 - (1) fibroblasts
 - ② Water
 - ③ Collagen fibers
 - : run in the longitudinal direction, parallel to the axis of loading
 - : primarily type I (70% dry weight of ligament, 85% dry weight of tendon)
 - : small amount of type III
 - : trace amounts of types V, X, XII, and XIV
 - 4 Non-collagenous protein: elastin, fibrillar protein, proteoglycans

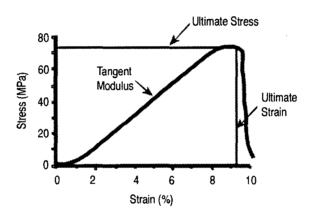
* Crimp

- : undulating pattern of the collagen (histologically visible phenomenon)
- : related to a certain degree of elasticity within the ligament

제14차 대한정형외과 스포츠의학회 학술대회

- 2. The insertions of tendons and ligaments
 - : The insertions of tendons and ligaments into bone are functionally adapted to dissipate forces through the transition from soft tissues to bone
- * Classification of insertion
 - : Direct or indirect
 - 1 Direct insertions
 - : consist of four morphologic zones
 - : Tendon, fibrocartilage, mineralized fibrocartilage, and bone
 - 2 Indirect insertions
 - : Superficial layer, which connects directly with the periosteum
 - Deeper layers that anchor to the bone via Sharpey's fibers

Mechanical properties of the ligament substance


- When the elongation limits of a ligament are exceeded a characteristic failure pattern occur
- : Ligaments have a typical stress-strain curve
- 1. Stress-strain curve
- -divided into four major components that reflect the physical response of the ligament
- -stress: defined as the load per unit cross-sectional area of a ligament
- -strain: defined as the deformation per unit length of a ligament
- 1 First region
 - : nonlinear toe region
 - : initial area, represents the straightening of the collagen crimp
- 2 Second region
 - : linear functional region
 - : stress is linearly proportional to the strain

3 Third region

- : early failure region, microscopic disruption
- : ligament still has a normal gross appearance
- : still able to resist some tensile force

4 Fourth region

- : failure region, complete ligament failure
- : ligament is not able to resist any tensile loading

- * Failure mode of ligaments appears to depend on several factors,
- : axis of loading, strain rate, age, and activity level.

Physiology of ligament healing

Phase I: inflammation

- ① damage of capillaries within the ligament and adjacent tissues
- ② hematoma fills the space created by the displacement & retraction of ligament ends
- 3 in response to the injury and their exposure to the fibrin of the blood clot.
 - : most cells release potent vasodilators
 - : such as histamaine, serotonin, bradykinins, and prostaglandins
 - → help initiate the healing process in the gap between the injured ligament ends
- 4 occur during the first 72 hours after injury

(5) histology

- : inflammatory cells and erythrocyte are seen fill the injured area
- : macrophages begins the phagocytosis of necrotic tissue and cellular debris
- : capillary endothelial proliferation into the wound
- : fibroblastic proliferation begins.
 - \rightarrow produce an extracellular "scar" matrix of proteoglycan and collagen.
- : most of the newly synthesized collagen in ligament scar : type III
 - \rightarrow responsible for early stabilization of the extracellular collagen meshwork
- : small portion of type I collagen
 - → more important to long-term matrix properties

Phase II: matrix and cellular proliferation

- 1) occurs over the next 6 weeks
- ② organization of the fibrin clot and is characterized by cellular and matrix proliferation.
- ③ the scar is very cellular and contains macrophages, mast cells, and fibroblasts.
- 4 the gap between the torn ligament ends
 - : filled with a friable, vascular, granulation tissue, and
- (5) the fibroblast is the predominant cell type.
- 6 active collagen synthesis occurs
 - : in both the proliferation scar and the adjacent normal-appearing tissue.
 - : but collagen concentration remains low
 - \rightarrow because of the less dense, woven organization of the collagen framework
- ① type I collagen is the predominant matrix component during this phase.

Phase III: remodeling

- ① relative decrease in the cellularity and vascularity of the reparative scar
- ② increase in the collagen density of the scar
- 3 ligament scar: more organized and packed collagen arrangement
- 4 biochemically, active matrix synthesis decreases

(5) biochemical profile of the extracellular matrix moves toward that of normal ligament

Phase IV: Maturation

- 1) the ligament scar gradually matures over the next several months
- 2 this phase of healing is extremely variable
 - : probably requires 12 months or more to be complete

Injuries of tendon & ligament of the knee

Classification of ligament injuries

- 1. Sprain
- 1 First degree sprain
 - : tear of a minimum number of fibers (microtears or less than one third) of a ligament
 - : with localized tenderness and no instability or laxity
- ② Second degree sprain
 - : tear of more ligamentous fibers (one to two thirds)
 - : with more loss of function and more effusion but no laxity or noticeable instability.
- 3 Third degree sprain
 - : more disruption of fibers (greater than two thirds) and demonstrable laxity
 - : further subdivided into three categories
- 2. Grading of third-degree sprains (Instability)
- ① Grade 1 (mild) rupture : $\langle \; 0.5 \; \text{cm} \; \text{opening of joint space or translation}$
- ② Grade 2 (moderate) rupture : $0.5\sim1$ cm
- 3 Grade 3 (severe) rupture : > 1 cm