P 49

Expression of a Pn-ANP in Transgenic Tomato Plants Confers Disease Resistance against Non-Chitin-Containing Oomycetes fungus Phytophthora capsici

이보영 · 이옥선 · 박남미 · 김영회 · 윤대진* 경상대학교 대학원 응용생명과학부

Objectives

It has been thought that the antifungal activity of hevein-like proteins is due to the chitin-binding activity of the proteins. However, this hypothesis was inconsistent with our data from in vitro assays indicating that Pn-AMP1 and Pn-AMP2, two hevein homologs from Pharbitis nil, showed antifungal activity against both chitin-containing and non chitin-containing fungi (Koo et al., 1998). To verify in vivo biological activity of Pn-AMPs, we constitutively expressed a Pn-AMP cDNA in tomato (Lycosporium esculentum) plants under control of the cauliflower virus 35S promoter.

Materials and Methods

- Biological materials: Tomato (Lycosporium esculentum)
 Korean cultivars, Seo-Gwang
- · Chitin binding activity
- · Antifungal activity test
- Construction of transgenic tomato expressing Pn-AMP2
- Northern blot analysis

Results

- Chitin Binding Activity of Pn-AMPs Are Not Related to In Vitro Antifungal Activity
- 2. Constitutive Expression of Pn-ANP in Transgenic Plants

Confers Disease Resistance against Both Chitin-Containing and None Chintin-Containing Fungi

The transgenic plants constitutively overexpressing the Pn-AMP showed enhanced resistance to *Phytophthora capsici*, a non-chitin containing *Oomycetes* fungus and *Rhizoctonia solani*, a chitin containing *Agonomycetes* fungus. These results collectively indicate that chitin-binding activity of the Pn-AMP is not directly associated with its antifungal activity and the protein can be used as a novel source of disease resistance against agronomically important phytopathogenic fungi.

Discussion

In this report, we demonstrate that the transgenic plants constitutively overexpressing the Pn-AMP2 show enhanced resistance to *P. capsici* and *R. solani*, two major phytopathogen which threatens the yields of tomato crops. This is the first evidence that a hevein-like protein, overexpressed in transgenic plants, has a role in plant defense against both chitin-containing and non-chitin containg fungal pathogens. Furthermore, Pn-AMPs can be used as a novel source of disease resistance since they have the broad and potent antifungal activity against agronomically important phytopathogenic fungi.

Reference

Koo et al., (1998) Two hevin homologs isolated from the seeds of Pharbitis nil L. exibit potent antifungal activity. BBA1382, 80-90

^{*}Corresponding author Tel 055-751-6256 E-mail djyun@nongae.gsnu.ac.kr