The Investigation of Contact Surface Regions between MgB₂-core and SUS-tube for MgB₂/SUS Tapes K. J. Song^a, N. J. Lee^a, H. M. Jang^a, H. S. Ha^a, D. W. Ha^a, S. S. Oh^a, M. H. Sohn^a, R. K. Ko^a, C. Park^a, Y. K. Kwon^a, and J. H. Joo^b We have fabricated single-filament composite MgB₂/SUS tapes that were performed by powder-in-tube (PIT) processes. Surprisingly, the transport critical currents of non-sintered MgB2/SUS tapes are much higher than sintered one's. The transport critical currents of the tapes $I_c \sim 316$ A and ~ 105 A were observed at T = 4.2 K with H = 0 G for non-sintered and sintered MgB₂/SUS tapes, respectively. We investigated the cross sections of the sintered as well as the non-sintered tapes, employing SEM and EPMA. Impurity phases such as MgO or MgB₄ for the sintered tapes were observed by XRD analyses as well. In addition to MgO or MgB₄ phases, contact surface regions between MgB2 core and SUS tube for the sintered tapes have found much wider than the non-sintered one's. Some reacted traces of the Ni, Cr, or Mn components of the commercial SUS-tube were found at the contact surface between MgB2 core and SUS tube for the sintered MgB2/SUS tapes by EPMA line profiles, too. On the other hand, the isothermal magnetizations M(H) of the sintered MgB₂/SUS tapes and the commercial MgB₂ powder were measured at temperature T between 5 and 50 K in fields up to 6 T, employing a PPMS-9. The persistent current density (J_p) values, which were obtained from Bean model, were observed more than $\sim 5 \times 10^5 \text{ A/cm}^2$ and $\sim 5 \times 10^7 \text{ A/cm}^2$ at T = 10 K with H = 0 G for the sintered MgB₂/SUS tapes and the commercial MgB₂ powders, respectively. The composite metal-clad MgB₂ tapes could be offer shining visions of reaching much higher persistent critical current density by better controlling of contamination and optimizing of the processes during fabrication. keywords: MgB₂/SUS tapes, sintering or non-sintering, critical currents, magnetization. ^a Applied Superconductivity Group, Korea Electrotechnology Research Institute, Changwon, Korea ^b School of Metallurgical and Materials Engineering, Sungkyunkwan University, Suwon, Korea