I-V Characteristic Measurements to Study the Nature of Vortex State and Dissipation in MgB₂ Thin Films

Seungje Choi*, Eun-Mi Choi, Hyun-Jung Kim, Kijoon H. P. Kim, Hyun-Sook Lee, W.N. Kang and Sung-Ik Lee

National Creative Research Initiative Center for Superconductivity, Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

S. K. Gupta, Shashwati Sen, Ajay Singh, D.K. Aswal and J.V. Yakhmi
Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Center,
Mumbai -400 085, India

The temperature dependence of current-voltage (I-V) characteristics of MgB₂ thin films has been studied at different magnetic fields (H) and angles (θ) between H and the ab-plane. The I-V characteristics obtained at different H and θ show critical scaling indicative of vortex glass transition. The critical exponents are found to be independent of H and θ indicating an universal behavior. The scaling functions are also seen to be field and angle independent when resistivity and current density are normalized with two parameters ρ_0 and J_0 , which are a function of H and θ . Field and angle dependences of parameters ρ_0 and J_0 , and vortex glass transition temperature, T_g , are seen to be in agreement with anisotropic GL model.