Modified Ca-phosphate/DNA Complex as a Gene Delivery System for Gene Therapy Application

Duk Jae Oh

Department of Bioscience and Biotechnology, Sejong University

Calcium phosphate precipitation technique has been one of the most common methods to introduce genetic information into a variety of cells. This is a non-viral gene delivery system but is widely used to produce viral vectors in industries. However, since the transfection efficiency is influenced dramatically by a narrow window of parameter conditions used for Ca-phosphate/DNA complex preparation, the outcome differs among research groups. Therefore, though it is a simple and economical transfection method, acquisition of reproducibility has been a major issue in the Ca-phosphate/DNA precipitation technique particularly in a large-scale transfection.

In this study, optimal conditions for preparation of Ca-phosphate/DNA complex were examined to get a high transfection efficiency. The nature of Ca-phosphate/DNA complex and density of target cells were important in transfection process, and key parameters for optimal preparation of Ca-phosphate/DNA complex were reaction temperature and concentrations of plasmid DNA and CaCl₂.

To secure the reproducibility for large-scale applications, the effects of long term storage of the preformed Ca-phosphate/DNA complex were also examined. DNA complex particles were suspended in HEK293 culture medium and stored at different temperatures. Transfection efficiency maintained for a week when DNA complex particles were stored at 4°C, but dropped to a half at -20°C.

To enhance the transfection efficiency, sodium butyrate, chloroquine, and DMSO were tested, and their effects as an elicitor were confirmed.

A new technique for preparation of Ca-phosphate/DNA complex was also developed and optimized for stable high transfection efficiency, which is an essential in gene therapy applications.

약 30 년전 Graham 과 Van der Eb 등에 의해 개발되어 사용되기 시작한 calcium phosphate precipitation 법은 유전자를 세포에 도입하는 기술로서 매우 광범위하게 사용되어 왔다. 이 방법은 phosphate buffer 와 CaCl₂ 및 DNA 만을 사용하여 유전자전달 효율이 비교적 높은 나노입자를 만드는 방법으로서, 매우 간단하게 유전자 전달체를 제조할 수 있으며 매우 경제적인 방법이기도하다. 그러나, 이러한 Ca-phosphate/DNA 복합체의 제조법은 buffer 의 pH, 반응온도, 시료의 농도 등에 의해 매우 예민하게 변화할 뿐만 아니라, 같은 환경에서 제조하더라도 입자의 처리시간 및 precipitate 를 얻는 과정중의 mixing 정도에 의해서도 다양한 결과를 얻게되어 공정상의 안정

성이 문제로 제기되어 왔다. 이러한 가운데에서도 최근의 유전자치료분야에서의 급격한 발전과 함께 바이러스성 벡터의 대량생산에 Ca-phosphate/DNA 복합체의 이용법이 적극적으로 활용되고 있는 것은 이방법의 간편성과 경제성 때문이라고 할 수 있다. 그러나, 안정적으로 대규모의 transfection 이 가능한 공정으로서의 Ca-phosphate precipitation 법이 개발되어야 할 필요성은 유전자치료기술의 현실화를 위해서 아직도 매우 높은 상태라고 할 수 있다.

본 연구팀은 우선적으로 Ca-phosphate/DNA 복합체를 제조하기 위한 다양한 제조환경을 최 적화하고자 하였다. 이를 위해 각종 시료의 농도와 반응시간, 반응온도, mixing 법, 세포의 농도 등이 복합체의 형성과 유전자 도입율에 미치는 영향을 고찰하였으며, 이에 따라서 최적의 복합체 제조환경을 제시할 수 있었다. 이렇게 확립된 최적화 조건은 소규모의 transfection 에는 적합하 였으나, 대규모의 transfection 경우에는 복합체의 제조법이 여러 가지로 개선되어야 함을 알 수 있었으며, 이를 위한 개선책의 하나로 제조된 Ca-phosphate/DNA 복합체의 장기간 보존법을 고 려하게 되었다. 기존의 방법은 유전자도입을 위한 target 세포가 준비되면 Ca-phosphate/DNA 복 합체를 제조하고, 제조된 즉시 사용해야 하는 것이었는데, 제조된 복합체는 비교적 수십초에서 수분단위의 짧은 시간이 지남에 따라 복합체의 크기가 변화하면서 유전자도입율이 급격하게 감 소한다는 것이 밝혀져 있기 때문이었다. 일반적으로는 유전자 도입 효율을 효과적으로 수행하기 위하여 복합체를 넣기 2-4 시간 전에 배양중인 세포의 배지를 교환하게 되는데, 이 과정을 활용 하는 복합체의 보존방법을 개발하게 되었다. 즉, 세포가 준비되지 않은 상태에서 제조한 유전자 복합체를 세포배양용 배지에 넣어 보관한 뒤, transfection 을 위해 배지를 교환할 때, 복합체를 포 함한 배지를 활용하는 것이다. 이 같은 방법을 이용하여 미리 제조한 유전자복합체를 4℃에서 보관한 경우, 유전자 도입율에 변화를 주지 않으면서 1 주일간을 유지할 수 있다는 것을 알 수 있었다. 이 방법은 그동안 대량의 Ca-phosphate/DNA 복합체를 제조하는 데에 많은 어려움을 호 소하였던 유전자치료 전문업체들이 간편하고 저렴하게 활용할 수 있는 방법이 될 것으로 기대하 고 있다. 이 밖에 유전자 도입효율을 증가시키기 위한 방법으로 butyrate, chloroquine 및 DMSO 등을 이용하는 방법을 고려하였고, 이들이 유전자 도입 효율 및 도입된 유전자의 발현을 증가시 킨다는 것을 확인하였다.

참고문헌

- 1. Graham, F. L. and Van der Eb, A., J. Virology, 1973, 52:456-467
- 2. Wilson, S. P., Liu, F., Wilson, R. E., Housley, P. R., 'Optimization of calcium phosphate transfection for bovine chromaffin cells: relationship to Calcium phosphate precipitate formation', Analytical Biochemistry, 1995, 226:212-220
- 3. O'Mahoney, J. V., Adams, T E, 'Optimization of experimental variables influencing reporter gene expression in hepatoma cells following calcium phosphate transfection', DNA and Cell Biology, 1995, 226:212-220
- 4. Wilson, S P; Smith, L Annette Smith, 'Addition of glycerol during DNA exposure enhances calcium phosphate transfection', Analytical Biochemistry, 1997, 246,148-150
- 5. Eduard Kejnovsky and Jaroslav kypr, 'Millimolar Concentrations of zinc and other metal cations cause

- sedimentation of DNA', Nucleic Acids, 1998, 26:5295-5299
- 6. Hilliard, C. M., Fletcher, S., Yeoh, G.C.T., 'Calcium Phosphate Transfection and Cell-Specific Expression of Heterologous Genes in Primary Fetal Rat Hepatocytes', Biochem. Cell biology. 1996, 28:639-650
- 7. Bataed, P., Jordan, M., Wurm, G., 'Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection', Gene, 2001, 270:61-68
- 8. Tanner, F. C., Carr, D. P., Nabel, G. J., and Nabel, E. G., 'Transfection of human endothelial cells', Cardiovasscular Research, 1997, 35:522-528
- 9. Watanabe, S. Y., Albsoul-Younes, A. M., Kawano, T., Itoh, H., Kaziro, Y., Nakajima, S., and Nakajima, Y., 'Calcium phsphate-mediated transfection of primary cultured brain neurons using GFP expression as a market: application for single neuron eletrophysiology', Neuroscience Research, 33:71-78