Diversity of Epiphytic and Acid-tolerant Epiphytic Bacterial Communities on Plant Leaves

  • Joung Pil-Mun (Division of Life Science, Daejeon University) ;
  • Shin Kwang-Soo (Division of Life Science, Institute of Traditional Medicine and Bioscience, Daejeon University) ;
  • Lim Jong-Soon (Institute of Traditional Medicine and Bioscience, and Department of Oriental Medicine, Daejeon University) ;
  • Park Seong Joo (Division of Life Science, Institute of Traditional Medicine and Bioscience, Daejeon University)
  • 발행 : 2002.10.01

초록

The diversity of epiphytic bacterial communities on deciduous oak tree (Quercus dentate Thunb.) leaves was examined both in the natural forest area with a clean air and in the industrial estate to assess effects of acidic deposition to the phyllosphere using 16S rDNA sequence data. In addition, acid-tolerant epiphytic bacterial communities were compared. A total of 78 epiphytic and 444 acid-tolerant clones were obtained from clone libraries, resulting in 20 and 17 phylotypes by analysis of restriction fragment length polymorphism (RFLP) for PCR-amplified 16S rDNA products. A low bacterial diversity in both areas was found. As tree leaves grow older, bacterial diversities were slightly increased in the level of subphylum. The community structure of epiphytic bacteria in both areas in April consisted of only two subphyla, $\beta-and\;\gamma-Proteobacteria$. In August two additional subphyla in both areas were found, but the composition was a little different, Acidobacteria and Cytophaga-Flexibacter-Bacteroids (CFB) group in the industrial estate and a -Proteobacteria and CFB group in the natural area, respectively. Acidobacteria could be an indicator of epiphytic bacteria for acidic deposition on plant leaves, whereas a -Proteobacteria be one of epiphytic bacteria that naturally survive on leaves that are not affected by acidic deposition. The acid-tolerant bacterial communities in April were composed of two subphyla, $\gamma-Proteobacteria$ and Low G+C gram-positive bacteria in both areas, and in August a-Proteobacteria was added to the community just in the natural forest area. The direct influence of acidic deposition on the acid-tolerant bacterial phylogenetic composition could not be detected in higher taxonomic levels such as subphylum, but at narrower or finer levels it could be observed by a detection of Xanthomonadales group of $\gamma-Proteobacteria$ just in the industrial estate.

키워드