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Abstract

An unconstrained tuning fork with a 3-D model has been numerically analyzed by Finite Element Method
(FEM) and Boundary Element Method (BEM). The first three natural frequencies were calculated by the FEM
modal analysis. Then the change of the modal frequencies was examined with the variation of the tuning fork
length and width. Analytical model equations were derived from the numerically relating results of the modal
frequency-tuning fork length by approximating minimization. Finally the BEM was used for the sound
pressure field calculation from the structural displacement data.

1. Introduction

The tuning fork was firstly invented in England by
Royal trumpeter John Shore in 1711 [1]. A tuning fork
has its natural (modal) frequencies according to its
materialistic and structural fabrication. Even though the
tuning fork has a long history, its numerical analysis is
not well known. Many questions about the tuning fork
might be arisen; the variation of the tuning fork length,
the effect of the tuning fork width size, the sound
pressure intensity around the tuning fork and material
aspects etc. This paper answers to those questions. An
unconstrained tuning fork with a 3-D model has been
numerically analyzed by Finite Element Method (FEM)
and Boundary Element Method (BEM). The FEM is used
for calculation of modal frequencies and modal shapes
(displacements) while the BEM is used for calculation of
sound pressure in the 3-D space generated by the tuning
fork at the natural frequency. This paper deals with not
only the analysis of the tuning fork but also the practical
design of the tuning fork.
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2. Numerical Methods

2.1 Finite Element Method (FEM)

The following equation (1) is the integral formulation
of the FEM elastic equations:

{F}=xHa}-w?[ala}

M

2.2 Boundary Element Method (FEM)

For sinusoidal steady-state problems, the Helmholtz

2

equation, Vv +k>¥ =0 represents the fluid mechanics.

Jot and

v is the acoustic pressure with time variation, -
k(=w /c) is the wave number. ¢ is the sound speed, 340
[m/sec). In order to solve the Helmholtz equation in an
infinite air media, a solution to the equation must not
only satisfy structural surface boundary condition (BC),

Aian=p fm2 a, but also the radiation condition at infinity.
lim §,(0% /ar + jkw )2ds = 0
e -

o/3n tepresents differentiation along the outward
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normal to the boundary. o, and @, are the fluid density

and the normal displacement on the structural surface.
The Helmholtz integral equation derived from Green's
second theorem provides such a solution for radiating
pressure waves;

g[w@)w-ck(p,q)a;’—(")}sq )W) @
"q q
Where Gk(p,q)=e_jb/4m‘ r =|p-—ql

p is any point in either the interior or the exterior and
q is the surface point of integration. g (p) is the exterior
solid angle at p

The acoustic pressure for the i" global node,

( 1<isng )

}sq (3a)

(3e)

¥(p;), is expressed in discrete form [3]:

36k (pi.9)
() kapq_

Blpi J(p;) = fs[‘*‘ q Gk(Pi’q)a:—(q)

g g

leAm,]‘Pm_] Pf(” 2123 ’",j“mj
m=1j=1 m=1 j=1

where nt is the total number of surface elements and
a,, j are three dimensional displacements. When equation

(3e) is globally assembled, the discrete Helmbholtz
equation can be represented as

((4]- Bl D} = +p j0?[BYa} 4)

where [4] and [B] are square matrices of (ng by ng) size.
ng is the total number of surface nodes.

When the impedance matrices of equation (4), [4]
and [B], are computed, two types of singularity arise [4].

One is that the Green's function of the equation, 6;(p;.q),

becomes infinite as q approaches to p; . This problem is

solved by mapping such rectangular local coordinates
into triangular local coordinates and again into polar
local coordinates [5]. The other is that at certain wave
number the matrices become ill-conditioned. These wave
number are corresponding to eigenvalues of the interior
Dirichlet problem [6]. One approach to overcome the
matrix singularity is that {4] and [B} of equation (4) are
modified to provide a unique solution for the entire
frequency range [7-10]. The modified matrix equation
referred to as the modified Helmholtz gradient
formulation (HGF) [10] is obtained by adding a multiple
of an extra integral equation to equation (4).

(4] plr]e alcfw} = +p ;o (Blo alp]a} ©)
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The derivation of the extra matrices [C], [D] are well
described by Francis D.T.I. [10].

)= +p 0 (4®) " 824} ©)

Since the present acoustic vibrator produces

displacement data {s}at a natural frequency, the surface
pressure {¥} of the tuning fork is calculated from
equation (6). Once {s} and {¥} are known, the
acoustic pressure in the far field is determined by
B(p)=1 of equation (2) for given values of surface nodal

pressure and surface nodal displacement;

ant 8
IZAmj‘!’mj pfa)):Zija,,,]
j= m=1 j=1

*(n)- & @

3. Result

The particular structure considered is an unconstrained
tuning fork (figure 1). The whole tuning fork had been
divided into 550 isoparametric elements . Global node
numbers are 3934 nodes. Table 1 shows the material
properties of the air, steel and aluminum. The first three
natural frequencies were calculated from the FEM
equation (1) where {r}=0. In modal analysis {a} is an

eigenvector and 4= (wz)is an eigenvalue.
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Figure 1. 3D tuning fork dimensions. Elements=550.
Nodes=3934

Figure 2 shows the modal shape of the tuning fork at
128.4 Hz (1™ mode). The length and the width of the
tuning fork are 1524 [mm) and 25.4 [mm]. And the
applied material is steel (4130).

The green frame is the undeformed shape of the tuning
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fork while the solid color shows the Von Mises stress
(Equation 9) with deformed shape.

2 2 2
\/‘q(cl-dz) +(oy-03) +(03-0y) ] )
where ¢,,0,,0, are stresses in X, y, z coordinates.
Table 1. Material Properties
Density Young’s Poisson
(r) Modulus(E) Ratio
[Kg/ms] [N/mz] v)
Air 1.22 1.411E5 -
" Steel 7822.9 2.0684E11 0.30
Aluminum 2703.8 6.9637E10 0.36

Figure 2. Modal shape of tuning fork (Color=Von Mises
stress) at 128.4 Hz (1% mode), length=152.4 [mm)],
width=25.4 {mm}, material=Steel(4130)
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Figure 3. The first three modal frequencies as functions
of tuning fork length. circle=1* mode,
diamond=2" mode, rectangle=3" mode.

Then the change of the modal frequencies was
calculated with the variation of the tuning fork length
and width. Figure 3 shows the first three modal
frequencies as functions of tuning fork length with a
constant width. Each symbol indicates different modal
frequencies (Circle=1" mode, Diamond=2" mode,
Rectangle=3"  mode). Modal frequencies  are
exponentially increased with the reduced size of the
tuning fork length.

Analytical model equations were derived from the
numerically relating results of the modal frequency-
tuning fork length by approximating minimization (Table
2). Solid continuous lines of figure 3 were drawn from
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the analytical model equations for each mode. And figure
4 shows the comparison in percentage [%] between FEM
results and model equations. The most significant
difference happened at the 3™ mode with 25.4 [mm)]
tuning fork length, that is, 44%. But the rests of the
results are within 8% differences.

Table 2. Analytical model equations for each tuning
fork mode, x [m]

1"Mode | 2"Mode | 3" Mode
Model 2.0859 17.759 21.040
Equations 219 162 NED
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Figure 4. Comparison in percentage [%)] between

FEM results and model equations.

circle=1*" mode, diamond=2" mode,

rectangle=3" mode.
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Table 3. Modal frequencies with different tuning fork.
length=152.4 [mm], width=25.4 [mm],
material=Steel(4130)

Width Frequency [Hz]

[mm] 1* mode 2™ mode 3" mode
50.8 93.5 198.9 525.2
38.1 125.6 339.5 559.5
254 128.5 374.1 587.7
12.7 128.6 391.2 576.7
6.3 124.2 395.2 525.5

Table 3 shows that the change of the tuning fork width
does not much affect the variation of the modal
frequencies. Also figure 4 shows that the modal
frequencies of the tuning fork remain almost the same as
figure 3 though the material is changed from steel
(continuous line) to aluminum (dashed line). These
results show that the length of the tuning fork mainly
affects the natural frequencies of the tuning fork as far as
metallic materials are used.
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Figure 5. The first three modal frequencies as functions
of tuning fork length as Fig. 4. Continuous
Lines=Steel. Dashed Lines=Aluminum

Finally the BEM was used for the sound pressure field
calculation from the structural displacement data. From
equation (7) the acoustic pressure in the far field is
calculated along the circle with the directivity angle ¢

(figure 6). The normalized value of the far field pressure
is used as the quantitative degree of the directivity.
Figure 6 shows the acoustic pressure directivity pattern
at 1 [m] away from the tuning fork at 128.4 Hz(1¥ mode).
Because the modal frequency is low, the directivity
pattern is almost omni-directional. And figure 7 shows
the acoustic pressure radiation pattern of figure 6.
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Figure 6. Acoustic pressure directivity pattern at 1{m)
away from the tuning fork. at 128.4 Hz (1%
mode), length=152.4 [mm], width=25.4 [mm)},
material=steel (4130)

4. Conclusion

It is concluded that the length of the tuning fork
mainly affects the natural frequencies of the tuning fork
as far as metallic materials are used. Table 2 showed the
designing factor of the tuning fork fabrication. The
length of the tuning fork may be changed for a desired
first modal frequency such as A pitch (=440Hz) etc.
Figure 7 showed the acoustic pressure radiation pattern
generated by the tuning fork. This can be further used for
a particular radiation pattern synthesis.
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Figure 7. Acoustic pressure radiation pattern of Figure 6.
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