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Position Optimization of Strain Gauge on Blades
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ABSTRACT

This paper focuses on the formulation and validation of an automatic strategy for the selection of the locations and directions of
strain gauges to capture at best the modal response of a blade in a series of modes. These locations and directions are selected to
render the strain measurements as robust as possible with respect to random mispositioning of the gauges and gauge failures. The
approach relies on the evaluation of the signal-to-noise ratios of the gauge measurements from finite element strain data and includes
the effects of gauge size. A genetic algorithm is used to find the strain gauge locations-directions that lead to the largest possible
value of the smallest modal strain signal-to-noise ratio, in the absence of gauge failure, or of its expected value when gauge failure is
possible. A fan blade is used to exemplify the applicability of the proposed methodology and to demonstrate the effects of the
essential parameters of the problem, i.e. the mispositioning level, the probability of gauge failure, and the number of gauges.

1. Introduction

Measuring vibrations of turbomachine blades is a
substantially harder task than it is for most other
structures. The difficulties encountered stem in particular
from the harsh operating conditions of the blades, e.g.
the rotation, the fluid flow, as well as their structural
peculiarities, e.g. sharply peaked modal strain
distributions and mistuning effects. In general, the need
to not perturb the aerodynamics around the blades and
the high centripetal loading they are subjected to limit
the choice for blades to strain gauges and, more recently,
light probes systems. Further, the rotation of the system
considered necessitates the use of a slip ring to transmit
the strain gauge signals to the non-rotating environment.
It thus restricts the number of these devices to only a few,
typically many fewer than the product of the number of
modes of interest by the number of blades on the disk.

In general, it would be desirable to instrument a series
of blades in order to capture the one yielding the largest
resonant response because of the mistuning which incurs
dramatic differences in the amplitudes of the resonant
response of different blades. Given the limitations of slip
rings, the instrumentation of several blades is possible
only by using p strain gauges per blade to obtain the
modal strain amplitudes of m different modes, and p <m.

With such a small number of strain gauges, it is not
possible to obtain an accurate perspective of the strain
field from the measurements alone. The standard
resolution of this issue is then to rely on finite element
analyses to obtain the overall shape of the strain field and
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use the measurements as scale factor of the
computational results. To achieve the largest accuracy
given the inherent gauge error, quantization noise, etc., it
would best to position the strain gauges at the peaks of
the strain distribution of the different modes considered.
Indeed, the peaks of the strain distribution are often very
sharp and a slight mispositioning of the strain gauge, in
location and/or direction, may result in a measured strain
much less than the maximum value. The location of the
strain gauges thus appears as a compromise between
high strain levels and low sensitivity to mispositioning.

Another important practical consideration that affects
the selection of the strain gauge locations is their
potential failure. The combination of the large centripetal
loading, the entraining fluid flow, and possibly high
temperatures represents a particularly harsh environment
in which it is not unusual that a strain gauge debonds.
The optimization of strain gauge placement must then
include also the potential loss of one or several of the
strain gauges.

Surprisingly, given the practical importance of this
issue, there has been only a few investigations focusing
on the positioning of strain gauges on blade."
Therefore, the approach proposed in this paper is
complementary of these earlier efforts as it is statistical
in nature considering the random effects of mis-
positioning and gauge failure on the measured strains.

2. The Max-Min-Max Principle

2.1 No Gauge Failure

In the absence of gauge failure, the selection of the
strain gauge locations is dictated by the modal strain
distribution and by the measurement noise and potential
mispositioning of the gauges. While the noise and
mispositioning do not affect the strain measurements in
similar manners, they have one common effect, i.e. to
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produce variability in the obtained strain values. The
quantification of the variability present is most
conveniently achieved through the signal-to-noise ratio
(SNR) which is defined as

SNR(&)=u, /o, 09)

In this equation, 4 denotes the mean value of the
Further,

standard deviation which involves the contributions of

strain. o, represents the corresponding

the noise (o ), and of the mispositioning (o).

From its definition, Eq. (1), the SNR can be viewed as
a measure of confidence on the observed strains, i.e. the
larger this value is the smaller the variability is in
relation to the strain level. On this basis, the overall
strain gauge placement strategy proposed here focuses on
maximizing the SNR. The specifics of the optimization
approach are dependent on how the measurements are
used to estimate the modal strain distributions. In the
present effort, it has been assumed that the scaling factor
of the finite element results for a specific mode are
evaluated from the gauge yielding the largest SNR of all
p gauges for that mode. That is, let SNR (i, X ) be the
SNR of the measurement at location i in the jth mode of
response when the gauges are located at coordinates X.
Then, the best estimate of the forced response in that
mode will be obtained from the gauge i that gives the
largest value of SNR(i, j, X) so that the SNR of the

response in the jth mode is

SNR(j, X) = max SNR(, j, X) @
The appropriateness of a given set X of strain gauge
locations can then be characterized by the values
SNR(j, X),j =1, 2, ..., m, and more succinctly by the
lowest of these SNR taken over all modes considered, i.e.

SNR(X) = min SNR(j, X) (3)
7
On this basis, it is proposed here to select the strain
gauge locations X to maximize SNR(X). This process
results in the following max-min-max optimization
principle
Maximize min imax [SNR (i, J, K)]}
Jj i
with respectto X 4)

2.2 Multiplicity of Solutions

It should be noted that the max-min-max optimization
problem stated above quite often yields a multiplicity of
solutions that tends to grow as the number of gauges
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increases. This multiplicity of solution is most clearly
seen when the number of gauges equals the number of
modes. In this case, the solution that would be expected
from the optimization is the one in which each gauge is
placed at the peak location of the SNR of a different
mode. The corresponding value of the objective function,
i.e. SNR(X) is the smallest of the peak modal SNR on the
blade. Let that value be S and the corresponding gauge
location-direction be X;. Denote also by d the mode in
which S is achieved. Then, a series of solutions exists
each of which yields the same best min-max SNR S.
These different solutions can be constructed as follows.
First, select X as the first gauge location-direction. Then,
select the second gauge location-direction to provide a
SNR of mode 1 (ifd # 1, mode 2 otherwise) larger than
S. Similarly, choose the third gauge location-direction to
yield a SNR of mode 2 (if d # 2, mode 3 otherwise)
that is larger than S, etc. In this fashion, the minimum of
the modal SNR will be the best possible value, S,
irrespectively of the exact locations-directions of the
gauges 2, 3,..., p =m.

The multiplicity of solutions can be resolved by
turning to an objective function that involves SNR of all
gauges, e.g. a weighed average across different gauges.
However, the smallest of the modal SNR obtained for
such objective functions is often much smaller than the
one obtained with the max-min-max principle as
weighted average objective functions can be biased by
large values of the SNR of some mode at the detriment of
one or several others.

To resolve the multiplicity issue within the max-min-
max framework, it was decided to proceed with a
sequential optimization approach the first step of which
is the one described above. Once the largest minimum
modal SNR has been identified, the corresponding
location-direction is held for gauge 1. The max-min-max
optimization process is then repeated to maximize the
second smallest modal SNR of the combined p gauges
(including the fixed first one). If, at the completion of
this second step, it is found that the second smallest
modal SNR is also obtained by gauge 1, the third smallest
modal SNR is then considered. The process is repeated in
this fashion until all gauge locations-directions have been
selected.

2.3 Potential Gauge Failure

The failure of a gauge is a random event that leads to a
loss of measurement and thus to zero SNR for the failed
gauge. In general, this sudden change of SNR values of a
gauge will also affect the overall SNR of Eq. (2), (3)
rendering them random variables depending on the state,
failed or intact, of the gauges. The optimization problem
of Eq. (4) is then no longer well posed and will be
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replaced by the maximization of the expected value of
SNR(X), i.e. the average SNR that would be observed in a
series of identical tests with gauges randomly failing or
staying intact. Denoting by P,the probability of failure of
a gauge and assuming that the state (failed/intact) of
different gauges are statistically independent random
variables, it can be shown that

E[mjin {m’jax [SNR (i, j, 5)]}] =(1- P,y SNRmM'?

+P (1-p )" [i SNRmM,""”:|+ P-py?

where E[] is the expected value operator. Further,

5
[Zp: SNRmM ™2 ©)
k=1

k=l

SNRmM{P) denotes the smallest of the modal SNR of the
intact strain gauges set, i.e. as computed from Eq. (4).
Similarly, SNRmMI(p_l) is also the smallest modal SNR

but for the set of p-1 strain gauges remaining after the /th
one has failed. Next, SNRmM,(‘pl“z) is the smallest

modal SNR for the set of p-2 strain gauges remaining
after the kth and /th ones have failed, etc.

Note that the value of the above expected SNR is a
function of the SNR of all gauges, at the contrary of Eq.
(3). The multiplicity of solutions discussed in connection
with the no gauge failure case is thus removed by
considering the probability of gauge failure.

It should be noted that Eq. (5) has been obtained under
the assumption of an equal probability of failure for all
gauges but it is readily extendable to the situation where
this probability varies with gauges, e.g. is dependent on
either the gauge number or its location on the blade.

3. Optimization Algorithm

The proposed strain gauge placement strategy is based
on the selection of the locations-directions on the blades
that yield a best SNR. This process was accomplished in
two stages. First, a search over a discrete set of locations
and directions was conducted to find the best positioning
of the strain gauges within this set. Then, if desired, a
more refined positioning could be accomplished by
allowing the strain gauge to be located in the
neighborhood of the optimum solution corresponding to
the discrete set.

The discrete set of locations and directions was
obtained by considering each internal node and a series
of equidistant angles from 0° to 180°. Accordingly, a
very large discrete set was obtained in which many local
maxima of the SNR could be expected. To ease

3
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computations, a set size reduction was first performed.
Specifically, consider two different locations and
directions each having it’s own set of SNR. If the SNR of
the second location-direction are lower than the
corresponding values for the first one then the second
location-direction cannot be part of the optimum solution.
Thus, the second location-direction can be removed from
the set to be investigated.

To address the optimization effort given the large
number of local maxima expected, it was decided to use
the simple genetic algorithm which had successfully
been used in an optimization of intentional mistuning
patterns.

It may be desired in some circumstances to dispose of
a finer positioning capability than that provided by the
finite element mesh. Such a freedom can be obtained by
proceeding first with the search through the discrete set,
as described above, and using the optimum locations and
directions thus found as an initial condition for a refined
optimization. While the SNR computations could be
carried out as described above, an alternate approach was
implemented in which the SNR were directly interpolated
from their values at the nodes surrounding the optimum
locations. For this task, the Lagrangian interpolation
polynomial was used and the optimization process was
implemented in the MATLAB(v5.0) environment with
the function constr. The extrapolation of the SNR from
the neighboring nodes to the border or corer did seem to
be fairly well conditioned.

4. Example
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Fig. 1 Modal strain distributions for the first 5 modes of
the fan blade (Pressure side)
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To demonstrate the application of the proposed robust
positioning of strain gauges, a fan blade from a
Honeywell engine was considered. The ANSYS finite
element consisted of 4,830 8-node blocks, 7,560 nodes,
and the first 5 modes were considered. The strain
distributions on the pressure side of the blade are shown
in Fig. 1 (a)-(e) for each of these 5 modes. The discrete
set of locations-directions was formed by the 4,624
internal nodes of the pressure and suction sides and 36
different angles (5° apart). Accordingly, there were a
total of 166,464 considered locations and angles to
position the strain gauges. The modal SNR of the 5
modes were computed at each of these locations-
directions. The standard deviation of mispositioning (in
position only, not in angle) was varied from 0.01 in.
(0.254 mm.) to 0.12 in. (3.048 mm.). The largest SNR
value obtained for each mode is shown in Fig. 2. Note
the difference in behavior exhibited by modes 1 and 5 as
compared to 2 and 3.
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Fig. 2 Evolution of the peak modal SNR as a function of
the standard deviation of mispositioning
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Fig. 3 Distribution of SNR on the pressure side of the
blade for the third mode and for a standard deviation of
mispositioning in location only of (a) 0.03in, and (b)
0.06 in.

For the former modes, the peak SNR decreases slowly
and smoothly as a function of the mispositioning level.
On the contrary, for modes 2 and 3, there is initially a
rapid decrease of SNR but this trend suddenly changes
and an almost constant behavior is observed. To
understand these trends, the distribution of SNR on the
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blade was analyzed, e.g. see Fig. 3(a) and (b). As done in
connection with the strain distributions of Fig. I, these
figures were obtained by keeping for each location on the
blade the largest SNR computed as the angle was varied
through its 36 different values. Note from Fig. 3(a) and
(b) that the SNR distribution exhibits, as the
corresponding strain distribution of Fig. 1(c), two
dominant peaks, one very close to the trailing edge and
on toward the leading edge. For the smaller
mispositioning level, 0.03 in. see Fig. 3(a), it is the sharp
trailing edge peak that yields the largest SNR while
thesituation is reversed for the 0.06 in. mispositioning of
Fig. 3(b). Note from Fig. 2 that the 0.03 in.
mispositioning level is in the rapidly decaying zone
while the 0.06 in. case falls in the flat region of the curve.
An analysis of the SNR distribution plots for 0.04 in. and
0.05 in. mispositioning levels demonstrates that in fact
the break in the curve of Fig. 2 does occur when the peak
SNR shifts from one maximum (trailing edge) to the
other (leading edge). The different rates of decay of the
SNR with mispositioning level before and after the break
can be understood from the strain distribution plot of Fig.
1(c). Specifically, since the trailing edge peak is very
sharp, mispositioning will greatly affect the measured
strains and thus the SNR will rapidly decrease with
increasing mispositioning. On the contrary, since the
leading edge peak is quite blunt, mispositioning will only
produce a mild effect as seen by the almost flat zone of
Fig. 2. A similar situation occurs for mode 2 but also for
mode 1 but it is not seen in Fig. 2 because the shift
occurs at a mispositioning level below 0.01 in. Indeed,
the strain distribution for mode 1, see Fig. 1(a), exhibits
two almost equal peaks both on the pressure side with
the largest one at the root of the blade on the leading
edge. Note that the SNR peak shifting explains in
particular why the curve of Fig. 2 for mode 1 does not
seem to converge to 100 at O mispositioning as required
from the 1% measurement noise.

These first results support the choice of the SNR as the
appropriate metric for the selection process of gauge
location-direction. Thus, the max-min-max principle is
expected to follow the intuitive rule of selecting the peak
strain location if the peak is not “too sharp” but it will
guantify at what mispositioning level the shift in
location-direction must take place.

Having validated the usefulness of the SNR for the
gauge positioning process, the optimization of the
minimum modal SNR was undertaken, first without
gauge failure, then with a nonzero probability of such an
event. It was first observed that the simple two-pass
reduction strategy was particularly effective in reducing
the number of locations-directions to be considered. For
a 0.06 in. standard deviation of mispositioning, the set
size was reduced from 166,464 locations-directions to



AL & HE L 20029 % JIHBEHE A

=13
=4

k=14
=

o o

0>

3,020 or 3% of the original size!

While genetic algorithms have a series of advantages
over traditional gradient-based techniques, they are also
known to occasionally suffer from a lack of convergence
to the absolute optimum. It was thus desired to first
assess the convergence behavior of the genetic algorithm.
The two limiting cases of 1 and 5 gauges were thus
considered first. The optimum for 1 gauge could easily
be obtained by an exhaustive search through the 5,020
directions-locations. Further, the 5 gauges optimum
solution was also readily determined as it corresponds to
the gauges being located on the peaks of the 5 modal
SNR distributions. In both cases, the genetic algorithm
recovered exactly the expected optimum solution. The
optimum positioning of 2, 3, and 4 gauges was then
considered and the corresponding modal SNR are shown
in Fig. 4. It is seen from this figure that an increase in the
number of gauges leads, as expected, to a monotonic
increase in all modal SNR. However, the objective
function, i.e. the minimum modal SNR appears to be
rapidly converging, i.e. it is almost constant for 3 or
more gauges. Certainly, the consideration of 4 or 5
gauges leads to improvements but only on modes (e.g. 1,
4, and 5) that are already well captured as they exhibit
large modal SNR. From a pragmatic point of view, the
return on investment is low for more than 3 gauges for 5
modes, a result that appears to match some practical
experience. These results also demonstrate that the max-
min-max principle has forced the efficient use of the
strain gauges and thereby validate its use.
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Fig. 4 Evolution of the modal SNR ratios as a function of
the number of strain gauges, standard deviation of
mispositioning = 0.06 in. P;=0.

The influence of potential strain gauge failure was
considered next for 3 gauges and a mispositioning
standard deviation of 0.06 in. Beside the case P;= 0
treated above, the values 0.1, 0.2, and 0.3 were also
considered. Intuitively, it is expected that the possibility
of gauge failure should promote the evenness of the SNR
of the gauges across the different modes. To validate or
invalidate this expectation, the SNR of the 3 gauges for
the 4 different probabilities of failure were plotted as a
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function of the mode number, see Fig. 5. This figure does
indicate some trend of increase of the smallest SNR and
decrease of the largest one as the probability of failure
increases but this trend is certainly not as clear as
intuitively thought. In this regards, it should be
recognized that (1) not all SNR are present in the
objective function, i.e. the expected minimum modal
SNR, only 7 of the 15 values appear in Eq. (5) and (2) the
SNR that are present in Eq. (5) are not equally weighted.
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Fig. 5 SNR for 3 gauges as a function of the mode
number for different probabilities of failure
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Fig. 6 Minimum modal SNR corresponding to the
optimum solutions for 3 gauges as functions of the
probability of gauge failure.

In light of these observations, it was decided to
reprocess the data of Fig. 6 emphasizing only the 7 SNR
of Eq. (5) and considering separately SNRmM ‘?, the 3
SNRmM{"™" values, and the 3 SNRmM (#~? terms. To

display these SNR on the same plot while separating
them, arbitrary shifts of 200(the top level, all three gauge
intact) and 100(one gauge failure) were added
respectively to  SNRmM'” and the 3 terms
SNRmM #7" . The result of this process is Fig. 6. Several

important observations can be drawn from this plot.
First, as the probability of failure remains small, the
dominant contribution to the objective function is still
the minimum modal SNR. Thus, this value (the diamonds
of Fig. 6) only slightly decreases at first. Thus, the
consideration of a probability of failure as large as 0.2
does not significantly alter the reliability of the measured
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strains if failure does not occur. On the contrary, if
failure does occur once, the mean smallest modal SNR
decreases from 28.8 for the optimal solution considering
Pr=0.2 to 17.3 for the one obtained with P,= 0. This
drop is equivalent to an increase by 66% of the
measurement error on the strains, from 1/28.8 = 3.5% to
1/17.3 = 5.8%. It thus appears in this case that the safe
approach, i.e. to consider a potential gauge failure even
when it is unlikely, is appropriate if the probability of
gauge failure is 0.2 or less. For higher values of this
probability, the optimal solution becomes overly
conservative and the accuracy of the measured strains is
affected.

Consider next the SNR obtained with one failed gauge,
1.e SNRmM {r=D 1t is found from Fig. 6 that these values

increase monotonically on average and that their
standard deviation (variability) decreases as the
probability of failure increases. Thus, the optimum
solution is driven to yield a minimum modal SNR that is
(1) fairly high, (2) quite insensitive to which gauge has
failed. This behavior is in fact the evenness expected
above.

Finally, although the SNR obtained with two failed
£aUgeS, SNRmM éf;—Z) , do not affect significantly the

objective function for the low probabilities of failure
considered, it is nevertheless seen from Fig. 6 that these
terms do exhibit the behavior of increasing mean and
decreasing standard deviation already observed in
connection with SNRmMI(p_l)- The clarity of the trends

shown in Fig. 6 as opposed to the rather unclear ones of
Fig. 5 demonstrates that the strain gauge positioning
strategy with potential gauge failure is intuitively simple
and logical but that obtaining the optimal solution
without an efficient search algorithm is not.

The effect of the gauge size on the optimum strain
gauge placement was investigated by considering a
square gauge of 0.06 in. with standard deviations of
mispositioning equal to 0.03 in. and 0.06 in. In both
cases, it was found that the distribution of SNR was
almost identical to the one obtained by a zero-size gauge
and thus no change in the optimal gauge locations-
directions was observed.

The convergence of the strain gauge locations-
directions was achieved very quickly and remained
within the neighborhood of the solution provided by the
genetic algorithm and used as initial condition.

5. Summary

This paper focused on the formulation and validation
of an automatic strategy for the selection of the locations
and directions of strain gauges to capture at best the
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modal response of a blade in a series of modes. The
approach seeks the strain gauge locations-direction that
lead to the maximum robustness (SNR) of the measured
strain values with respect to the inherent system
measurement noise and the mispositioning of the gauge
in location and direction.

The formulation of a multi-step optimization strategy
is used to search for the best strain gauge locations-
directions in this paper. The first step of the approach is a
simple but efficient reduction strategy that eliminates
locations and directions which cannot be optimal
solutions. The second step is a true optimization effort
based on a genetic algorithm and aims at the best
placement of strain gauges on the nodes of the finite
element mesh. The final step is a fine optimization that
searches for the optimal placement of the strain gauges
within the finite elements. The proposed strategy for the
selection of strain gauge locations-directions was finally
exemplified and validated on a full finite element model
of a fan blade. The trends of the optimal strain gauge
locations were found to be in complete agreement with
intuitive expectations but were able to quantify precisely
the effects of mispositioning and gauge failure.
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