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Abstract

The suitability of high-order accurate, central and upwind-biased compact difference schemes is evaluated for the large-eddy
simulations of flows in complex geometry. Two flow geometries are considered: channel and circular cylinder. The effects of
numerical dissipation and aliasing error on the evaluation of subgrid scale stress are investigated by extending the analysis by Ghosal
[1] to centered and upwind compact schemes. It is shown that the failure of upwind schemes mainly comes from the aliasing error.

1. Introduction

Large-eddy simulation (LES) of turbulent flows is normally performed
on grids that are just fine enough to resolve the important large flow
structures. Numerical discretization errors, which are composed of
finite-differencing and aliasing errors, from these grids have
considerable effects on the simulation results. Recent analysis and
posteriori numerical experiments [1, 2] show that discretization errors
outweigh modeling errors and that aliasing errors are the leading source
of errors for high order schemes.

On the other hand, the need for using high order upwind schemes for
LES arises when the problems with strong discontinuity are to be
tackled such as the flow with shock/turbulence and shock/boundary
layer interaction. Besides, upwind schemes are believed to have the
ability to control aliasing errors due to embedded numerical dissipation.
However, it become clear in recent years that dissipative schemes are
not good candidates for use in LES of turbulent flows. Except in cases
where the flow is extremely well resolved, it has been found that
upwind schemes tend to damp out a significant portion of the small
scales that can be resolved on the grid. A well-known case is the LES
of flow past a circular cylinder performed by Beaudan & Moin [3] at
Reynolds number of 3900, where 5th and 7th order schemes were used.
However, some questions arise regarding this issue: Is the conclusion
due to Beaudan & Moin [3] universal for other schemes such as
recently developed high resolution upwind schemes? Does numerical
dissipation really reduce aliasing etror? If so, can we find an ‘optimal’
upwind scheme which balances aliasing error and finite-differencing
error such that the total error should be minimized? To answer these
questions is the main objective of this study. In addition, the
investigation of the suitability of centered compact difference schemes
for LES of flows in complex flows is another objective.
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2. Computational Method

Governing equations are compressible formulation of filtered
conservation equations that consists of mass, momentum, energy
equations and the state equation. Subgtid-scale (SGS) stress and heat
flux are modeled by Smagorinsky model, whose constants are
determined by the dynamic procedure proposed by Moin et al. [4]. For
any scalar quantity ¢, such as metric, flux component or flow variable,
the derivative is obtained by standard 4th order compact difference
scheme [5]. The only exception is the convection terms whose
derivatives are given by a general compact scheme with one free
parameter o, which is proposed by Zhong [6] :
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Eq. (1) reduces to 4th order compact scheme (denoted as COM4
hereinafter) with o =0 . For other values of o, Eq. (1) is 3rd order
accurate upwind-biased scheme. As Zhong [6] recommended 0.25 as
the proper choice of o , we will refer to Eq. (1) with o =0.25 as
CUDZ. a=1.5 corresponds to a compact upwind scheme proposed
by Tolstykh [7], which will be referred to as CUD3 following his
notation. One can mimic most of high order upwind schemes with Eq.
(1) by controlling the parameter o . For COM4 (o=0), a
skew-symmetric form as well as divergence form of convection term is
adopted, whereas only divergence form is adopted for other cases. The
spectral analysis of Kravchenko & Moin [8] (denoted as KMT1) reveals
the relation between the nonlinear term formulation and aliasing error,
and recommends the following skew-symmetric form to minimize
aliasing error
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3. Results
3.1 Fully developed channel flow at Re =23000

The first problem is a fully developed channel flow at Re = 23000
based on the centerline velocity and the channel half-width &. This
case is selected to compare the present results with those from KM1,
who conducted LES of the same flow with various finite-differencing
scheme from 2nd order central difference (CD2) to de-aliased spectral
methods. For all cases considered, 48x64x48 grid points are used in the
streamwise, wall-normal, and spanwise directions, respectively, in a
computational domain of 2mx28xnd/2.

Five simulations are conducted with different discretization schemes
with and without SGS model. The results are summarized in Table 1.
The calculations with divergence form of the nonlinear terms are
numerically unstable, which is consistent with the results of KM1. The
results with skew-symmetric form are stable with and without SGS
model, whereas those with divergence form show laminarization of
flow with compact upwind schemes. Although the calculation with
CUDZ, which has much smaller numerical dissipation than that with
CUD3, seems to retain turbulence for a considerably long time, their
statistics such as the mean velocity and RMS values tend to slowly
move toward laminar solution instead of being converged.

Figs. 1(a) and 1(b) show the mean velocity and RMS velocity
fluctuations for various schemes listed in Table 1 together with those
from spectral LES (KM1) and experiments by Wei & Willmarth [9].
The results from CUDZ are shown for the purpose of comparison,
although they are under laminarization. The results from present LES
with COM4 in skew-symmetric from shows an excellent agreement
with those from spectral LES and experiment. The results without SGS
model underestimates the mean velocity and overestimates RMS
values, which is consistent with KM1 and other LES results. The
results from CUDZ are much worse than COM4 showing typical
over-damped results. This aspect is more clearly demonstrated by
one-dimensional energy spectra as shown in Fig. 2. The spectra from
the LES with COM4 agree well with those from spectral method up to
maximum resolvable wavenumbers by the numerical scheme, whereas
simulation without SGS model over-predicts the spectra nearly at all
wavenumbers, showing a clear effect of SGS model. However, the
results from COM4 simulation without SGS model are stifl in
reasonable agreement as compared to those from CUDZ. CUDZ seems
to damp out energies at all wavenumbers.

3.2 Flow past a circular cylinder at Re = 3900

The second problem considered is flow past a circular cylinder at Re =
3900 based on free-stream velocity and the cylinder diameter. It is one
of the challenging problems for LES that has been tackled by various
numerical schemes [3, 10].

Table 1. Numerical simulations of turbulent channel flow with various
discretization schemes.

Discretization | Nonlinearterms | SGS model | Results
COM4 Divergence 0 0
COM4 Skew-symmetric

0 ]
COM4 Skew-symmetric % °
CUDZ Divergence o ol
CUD3 Divergence o !

e Stable; T numerically unstable; ! flow laminarizes; o) flow
laminarizes very slowly
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(b) RMS velocity fluctuations
Fig. 1 Mean quantities for a fully developed channel flow.

An O-mesh with 144x201x48 point in the azimuthal, radial and
spanwise direction is used in a spanwise domain length of nD.
Some of the important flow parameters from the computation are
summarized in Table 2 together with those from previous LES and
available experiments. The present results are obtained from
COM4 (in skew-symmetric form) with SGS model. All the
parameters are in fairly good agreement with the experimental data and
previous simulations. Fig. 3 compares the instantaneous fields showing
separating shear layer and development of Karman vortex street.
CUDZ and COM4 show nearly the same structure near wake region
where the flow is well resolved. Unlike the results from COM4,
however, that from CUDZ has nearly no small-scale structure in the
region of x/D > 3.

ofF
10°F
(@

S

10"E

2

10°F

A

10

10°E

] = S5E

10 10°F
A 1 1 sl R mi 1 1
04 10 10° 0y 10 10°

Kx Ke

Fig. 2 One-dimensional energy spectra at y'~15 for a fully developed
channel flow: (a) streamwise wavenumber; (b) spanwise wavenumber.
See caption of Fig. 1 for details.



Table 2. Flow parameters from cylinder flow computation

Cp -Cp St Upin

Exp.[11-13] | 0.99+0.05 | 0.88+0.05 | 0.21540.005 | -0.24+0.1
Upwind [3] 1.00 0.95 0.203 -0.32
B-spline[10] 1.04 0.94 0.210 -0.37
Present 1.02 0.89 0.209 -0.33

COM4 (without SGS model)

CUDZ (with SGS model)

Fig. 3 Separating shear layer and development of Karman vortex street
in the flow over a circular cylinder.

Fig. 4 shows streamwise velocities in the wake. In this region, the effect
of dissipation and SGS model seems to be small so that two results
from COM4 show negligible difference and good agreements with
experimental data, although those from CUDZ shows some
discrepancy possibly due to the delayed shear layer transition. The
effect of numerical dissipation is clearly shown from the
one-dimensional frequency spectra at x/D = 7.0 as shown in Fig. 5
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Fig. 4 Mean streamwise velocity at three locations in the wake.
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Fig. 5 One-dimensional frequency spectra at x / D = 7.0. oy is the
vortex shedding frequency.
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Fig. 6 Finite differencing errors for compact difference schemes.

The spectrum from COM4 with SGS model gives an excellent
agreement with the experimental data of Ong & Wallace [11] up to
grid-cut-off wavenumber. The spectrum from COM4 without SGS
model shows also a good agreement. However, the spectrum from
CUDZ shows a rapid fall-off at high frequencies.

4. Analysis on Discretization Errors

In this section, the effect of numerical errors on the accuracy of LES is
evaluated analytically. Discretization errors are evaluated by their
power spectrum for a given energy spectrum. If we assume isotropic
turbulence, the spectrum of finite differencing error is given by
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Fig. 7 Aliasing errors for compact difference schemes.

where {}q denotes angular average in wavenumber space over the
surface of the sphere |k| = kand ¥V is the volume of the physical box.
k is the modified wavenumber for differencing scheme. The last term
denotes viscous term. F;~F, are determined once the three-dimensional
energy spectrum is given. For more details on the derivation of terms in
Eq. (3), see Ghosal [1]. Similarly, aliasing error is given by
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where K=k+a. The subscript B in the integral denotes the integration
over a cubic box. Ayis the set of wavevectors of the form (2pk;,, 2¢k,,
2rk,,) where p, ¢ and r are integers, and k,,is the maximum resolvable
wavenumber at a given grid. It should be noted that in the derivation of
Eqs. (3) and (4), conservative convection term is assumed for
simplicity.

The SGS force is given as

o(k) = k*[F, (k) + F, (k) + F, (k)] )

The Von Karman spectrum [1] is used as the prescribed energy
spectrum. Fig. 6 shows the power spectrum of finite- differencing error
for various schemes (&, = 8) together with the lower and upper bounds
of SGS force. Upwind schemes have larger finite differencing error at
all wavenumbers than their non-dissipative counterpart.. Fig. 7 shows
the aliasing error. It is found, contrary to the common belief, that the
aliasing error further increases with upwind schemes. From the Fig. 7,
aliasing error is more serious than finite differencing error
overwhelming SGS force at all wavenumbers regardless of
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discretization schemes. These results indicate that the aliasing error and
finite differencing error increase simultaneously as the magnitude of the
imaginary part of the modified wavenumber increases. Therefore, there
exists no optimal upwind scheme. It is interesting to note that falsely
dissipated energy at high wavenumbers is due to aliasing error. The
aliasing error of this kind that produced by dissipative schemes may be
called as the aliasing error in “reverse direction”. In addition to
increased aliasing and finite differencing error, the conservative form
for convection terms is responsible for the failure of LES with upwind
schemes. That is, the concept of ‘flux vector’ in upwind schemes
enforces the conservative form of convection terms, whereas
non-dissipative scheme can be used in a skew- symmetric form to
reduce the aliasing error.

5. Conclusions

The suitability of high order accurate compact differencing was
evaluated for large eddy simulation of complex turbulent flows from
the simulation and the analysis. Non-dissipative compact schemes were
shown to be good candidates for large eddy simulation provided that a
proper dealiasing of nonlinear terms is performed. The unsuitability of
upwind schemes for large eddy simulation is confirmed with compact
upwind schemes. It was also found the failure of upwind schemes
mainly comes from the aliasing error rather than finite differencing
error.
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