Optimal Designs of Partially Constant-Stress Life Testing For Three-Component Mixed Systems

Hee Chang Park¹, Kwang Man Jeng², Min Hwan Kim²

Abstract

In this paper we consider optimal designs of partially constant-stress life testing which is deviced for three-component mixed systems with the considerably long time. Mixed systems are jointed serial system with parallel system. Test items are run at both use condition and accelerated condition until a specified censoring time. The optimal criterion for the sample-proportion allocated to accelerated condition is to minimized asymptotic variance of the maximum likelihood estimators of the acceleration factor and hazard rates.

Keywords: ALT, PCLT, Mixed system

1.

가

가

(stress)

가 (accelerated

가 life testing: ALT) (partially accelerated life testing: PALT) 가

가

. 'Mann, Schafer Singpurwalla(1974)'가

'Armtiage Doll(1961)', 'Hartley Sielken (1977)'

> 'Glaser (1984)', 'Kitagawa (1984)', 'Fettel (1980)

가 'Nelson Hahn(1972, 1973)',

Kielpinski (1975, 1976) Soejoeti(1981)'가 'Nelson 'Bhattacharyya

¹Professor, Department of Statistics, Changwon National University, Changwon, Kyungnam, 641-773, Korea E-mail: hcpark@sarim.changwon.ac.kr

²Graduate Student, Department of Statistics, Changwon National University, Changwon, Kyungnam, 641-773, Korea

```
. 'Klein
                         Basu(1980, 1982)<sup>3</sup>
  가
                                  'Nelson(1980)'
     가
                                      (1989)*
                                                 'Nelson(1980)'
                                                               가
, 'Miller
           Nelson(1983)'
                                                                    (1994)*
                                                                           (1992)*
                                                                                               가
                                          {\bf `De Groot}
                                                      Goel (1979)'
           (1995)
                                                                                        (1996)
                                                     Chung(1992)'
                                                                                               가
                                            'Bai
             가
                                                                   가
                                                   'Bai(1993)'
                                                                              가
 (1995)'
                  1>
                                                                               가
                                                       2
```

1>

2.1.

2.1.1

1	2	3		1	
2	1		3	2	
3	1		2	3	
4	3	2		1	
5	2	3		1	

2.1.2

1	1,	2,	3			
2	1			3	2	
3	1			2	3	

2.2

t:

n: n_{ui} : i $(i=1,2,\cdots,5)$ n_{uci} : (i=1,2,3) n_{ai} : 가 i $(i=1,2,\cdots,5)$ n_{aci} : 가 i (i=1,2,3) τ : i t_{uij} : $(j=1,2,\cdots,n_{ui})$ t_{aim} : 가 m $(m=1,2,\cdots,n_{ai})$ ρ : 가 $\overline{\rho}$: $(\overline{\rho} = 1 - \rho)$ λ_i : i (i=1,2,3)

 β_i : i 7 \dagger $(\beta_i \ge 1)$ (i = 1,2,3)

158

2.3 가

가 .

[가 1]

.

[7 † 2] i λ_i

. ,

 $f_i(t) = \lambda_i \exp[-\lambda_i t]$

.

[7] 3] 7 i $\beta_i\lambda_i$

. ,

 $g_i(t) = \beta_i \lambda_i \exp[-\beta_i \lambda_i t]$

.

[가 4] 가 .

2.4

 $n\overline{\rho}$,

 $n\rho$ 가 .

z 2.4.2

.

t n_{ui} n_{ai}

 $n_{uci} \qquad n_{aci} \qquad \qquad \mathcal{I}$.

2.5

 $t_{u\ddot{y}}$, $t_{a\ddot{y}}$, n_{ui} , n_{ai} , n_{uci} n_{aci}

•

 $LL = (n_{u1} + n_{u4} + n_{u5} + n_{a1} + n_{a4} + n_{a5}) \ln \lambda_1 + (n_{u2} + n_{a2}) \ln \lambda_2 + (n_{u3} + n_{a3}) \ln \lambda_3$

$$+ (n_{a1} + n_{a4} + n_{a5}) \ln \beta_{1} + n_{a2} \ln \beta_{2} + n_{a3} \ln \beta_{3}$$

$$- \lambda \cdot T_{u1} - (\lambda_{1} + \lambda_{2}) (T_{u2} + T_{u4}) - (\lambda_{1} + \lambda_{3}) (T_{u3} + T_{u5}) + \sum_{j=1}^{n_{a5}} \ln (1 - e^{-\lambda_{3} t_{u3}})$$

$$+ \sum_{j=1}^{n_{u3}} \ln (1 - e^{-\lambda_{2} t_{u3}}) + \sum_{j=1}^{n_{u4}} \ln (1 - e^{-\lambda_{3} t_{u4}}) + \sum_{j=1}^{n_{u5}} \ln (1 - e^{-\lambda_{2} t_{u5}}) - n_{uc1} \lambda \cdot \tau$$

$$- n_{uc2} (\lambda_{1} + \lambda_{2}) \tau + n_{uc2} \ln (1 - e^{-\lambda_{3} \tau}) - n_{uc3} (\lambda_{1} + \lambda_{3}) \tau + n_{uc3} \ln (1 - e^{-\lambda_{2} \tau})$$

$$- (\beta \lambda) \cdot T_{a1} - (\beta_{1} \lambda_{1} + \beta_{2} \lambda_{2}) (T_{a2} + T_{a4}) + \sum_{m=1}^{n_{u5}} \ln (1 - e^{-\beta_{3} \lambda_{3} t_{u5m}})$$

$$- (\beta_{1} \lambda_{1} + \beta_{3} \lambda_{3}) (T_{a3} + T_{a5}) + \sum_{m=1}^{n_{u3}} \ln (1 - e^{-\beta_{2} \lambda_{2} t_{u5m}}) + \sum_{m=1}^{n_{u4}} \ln (1 - e^{-\beta_{3} \lambda_{3} t_{u5m}})$$

$$+ \sum_{m=1}^{n_{u5}} \ln (1 - e^{-\beta_{2} \lambda_{2} t_{u5m}}) - n_{ac1} (\beta \lambda) \cdot \tau - n_{ac2} (\beta_{1} \lambda_{1} + \beta_{2} \lambda_{2}) \tau + n_{ac2} \ln (1 - e^{-\beta_{3} \lambda_{3} \tau})$$

$$- n_{ac3} (\beta_{1} \lambda_{1} + \beta_{3} \lambda_{3}) \tau + n_{ac3} \ln (1 - e^{-\beta_{2} \lambda_{2} \tau})$$

$$(2.1)$$

 $, \ \lambda. = \lambda_1 + \lambda_2 + \lambda_3 \ , \ \beta. = \beta_1 + \beta_2 + \beta_3 \ , \ (\beta \lambda). = \beta_1 \lambda_1 + \beta_2 \lambda_2 + \beta_3 \lambda_3$

3.

.

$$E\left[-\frac{\partial^{2}LL}{\partial\lambda_{i}^{2}}\right] = \frac{n\overline{\rho}}{\lambda_{i}^{2}}B_{i} + \frac{n\rho}{\lambda_{i}^{2}}A_{i} \quad (i=1,2,3)$$
(3.1)

$$E\left[-\frac{\partial^2 LL}{\partial \beta_i^2}\right] = \frac{n\rho}{\beta_i^2} A_i \quad (i=1,2,3)$$
(3.2)

$$E\left[-\frac{\partial^{2}LL}{\partial\beta_{i}\partial\lambda_{i}}\right] = \frac{n\rho}{\beta_{i}\lambda_{i}}A_{i} \quad (i=1,2,3)$$
(3.3)

$$A_{i}, B_{i} \quad (i=1,2,3)$$

$$A_{1} = \frac{\beta_{1}\lambda_{1}}{\beta_{1}\lambda_{1} + \beta_{2}\lambda_{2}} \left\{ 1 - e^{-(\beta_{1}\lambda_{1} + \beta_{2}\lambda_{2})\tau} \right\} + \frac{\beta_{1}\lambda_{1}}{\beta_{1}\lambda_{1} + \beta_{3}\lambda_{3}} \left\{ 1 - e^{-(\beta_{1}\lambda_{1} + \beta_{3}\lambda_{3})\tau} \right\} - \frac{\beta_{1}\lambda_{1}}{(\beta\lambda)} \left(1 - e^{-(\beta\lambda) \cdot \tau} \right)$$

$$B_{1} = \frac{\lambda_{1}}{\lambda_{1} + \lambda_{2}} \left\{ 1 - e^{-(\lambda_{1} + \lambda_{2})\tau} \right\} + \frac{\lambda_{1}}{\lambda_{1} + \lambda_{3}} \left\{ 1 - e^{-(\lambda_{1} + \lambda_{3})\tau} \right\} - \frac{\lambda_{1}}{\lambda} \left(1 - e^{-\lambda \cdot \tau} \right)$$

$$A_{2} = \frac{\beta_{2}\lambda_{2}}{\beta_{1}\lambda_{1} + \beta_{2}\lambda_{2}} \left\{ 1 - e^{-(\beta_{1}\lambda_{1} + \beta_{2}\lambda_{2})\tau} \right\} - \frac{\beta_{2}\lambda_{2}}{(\beta\lambda)} \left\{ 1 - e^{-(\beta\lambda) \cdot \tau} \right\}$$

$$+ \beta_{2}^{2}\lambda_{2}^{2} \left\{ (\beta_{1}\lambda_{1} + \beta_{3}\lambda_{3}) G_{a2} + \frac{\tau^{2}e^{-(\beta\lambda) \cdot \tau}}{1 - e^{-\beta_{2}\lambda_{2}\tau}} \right\}$$

$$B_{2} = \frac{\lambda_{2}}{\lambda_{1} + \lambda_{2}} \left\{ 1 - e^{-(\lambda_{1} + \lambda_{2})\tau} \right\} - \frac{\lambda_{2}}{\lambda} \left\{ 1 - e^{-\lambda \cdot \tau} \right\} + \lambda_{2}^{2}(\lambda_{1} + \lambda_{3}) G_{u2} + \frac{\lambda_{2}^{2}\tau^{2}e^{-\lambda \cdot \tau}}{1 - e^{-\lambda_{2}\tau}}$$

$$A_{3} = \frac{\beta_{3}\lambda_{3}}{\beta_{1}\lambda_{1} + \beta_{3}\lambda_{3}} \left\{ 1 - e^{-(\beta_{1}\lambda_{1} + \beta_{2}\lambda_{3})\tau} \right\} - \frac{\beta_{3}\lambda_{3}}{(\beta\lambda)} \left\{ 1 - e^{-(\beta\lambda) \cdot \tau} \right\}$$

$$+ \beta_{3}^{2}\lambda_{3}^{2} \left\{ (\beta_{1}\lambda_{1} + \beta_{2}\lambda_{2}) G_{a3} + \frac{\tau^{2}e^{-(\beta\lambda) \cdot \tau}}{1 - e^{-\beta_{3}\lambda_{3}\tau}} \right\}$$

$$B_{3} = \frac{\lambda_{3}}{\lambda_{1} + \lambda_{3}} \left\{ 1 - e^{-(\lambda_{1} + \lambda_{3})\tau} \right\} - \frac{\lambda_{3}}{\lambda} \left\{ 1 - e^{-\lambda \cdot \tau} \right\} + \lambda_{3}^{2}(\lambda_{1} + \lambda_{2}) G_{u3} + \frac{\lambda_{3}^{2}\tau^{2}e^{-\lambda \cdot \tau}}{1 - e^{-\lambda_{3}\tau}}$$

$$G_{u2} = \int_0^{\tau} \frac{t^2 e^{-\lambda \cdot t}}{1 - e^{-\lambda_2 t}} dt , \quad G_{a2} = \int_0^{\tau} \frac{t^2 e^{-(\beta \lambda) \cdot t}}{1 - e^{-\beta_2 \lambda_2 t}} dt$$

$$G_{u3} = \int_0^{\tau} \frac{t^2 e^{-\lambda \cdot t}}{1 - e^{-\lambda_3 t}} dt , \quad G_{a3} = \int_0^{\tau} \frac{t^2 e^{-(\beta \lambda) \cdot t}}{1 - e^{-\beta_3 \lambda_3 t}} dt$$

$$(3.1) \qquad (3.3) \qquad \beta_i \qquad \lambda_i$$

$$F_{i}(\beta_{i},\lambda_{i}) = \begin{pmatrix} \frac{n\rho A_{i}}{\beta_{i}^{2}} & \frac{n\rho A_{i}}{\beta_{i}\lambda_{i}} \\ \frac{n\rho A_{i}}{\beta_{i}\lambda_{i}} & \frac{n\overline{\rho}B_{i} + n\rho A_{i}}{\lambda_{i}^{2}} \end{pmatrix}$$
(3.4)

(3.4)

$$|F_{i}| = \frac{n\rho A_{i}}{\beta_{i}^{2}} \cdot \frac{n\overline{\rho}B_{i} + n\rho A_{i}}{\lambda_{i}^{2}} - \frac{(n\rho A_{i})^{2}}{\beta_{i}^{2}\lambda_{i}^{2}} = \frac{n^{2}A_{i}B_{i}}{\beta_{i}^{2}\lambda_{i}^{2}}\rho(1-\rho)$$

$$\widehat{\beta}_{i} \qquad \widehat{\lambda}_{i}$$
(3.5)

$$V_g$$
 , \widehat{eta}_i V_{eta} , $\widehat{\lambda}_i$ V_{λ}

$$V_{g} = \sum_{i=1}^{3} GeA \ svar(\widehat{\beta_{i}}, \widehat{\lambda_{i}}) = \sum_{i=1}^{3} \frac{1}{|F_{i}|} = \frac{1}{n^{2} \rho(1-\rho)} \sum_{i=1}^{3} \frac{(\beta_{i} \lambda_{i})^{2}}{A_{i} B_{i}}$$

$$V_{\beta} = \sum_{i=1}^{3} A \, svar(\,\widehat{\beta_{i}}) = \sum_{i=1}^{3} \frac{1}{\mid F_{i} \mid} E \left[-\frac{\partial^{2} LL}{\partial \lambda_{i}^{2}} \right] = \frac{1}{n} \sum_{i=1}^{3} \beta_{i}^{2} \left\{ \frac{1}{A_{i}\rho} + \frac{1}{B_{i}(1-\rho)} \right\}$$

$$V_{\lambda} = \sum_{i=1}^{3} A \, svar(\,\widehat{\lambda_{i}}) = \sum_{i=1}^{3} \frac{1}{\mid F_{i} \mid} E \left[-\frac{\partial^{2} LL}{\partial \beta_{i}^{2}} \right] = \frac{1}{n(1-\rho)} \sum_{i=1}^{3} \frac{\lambda_{i}^{2}}{B_{i}}$$

 V_{g} ho 0.5 (trivial solution) V_{λ} ho 0.0 (trivial solution) V_{β} 7\(\rho\) ρ_{β} V_{β} ho 0

$$\rho_1 = \frac{-a_1 + \sqrt{a_1 a_0}}{a_0 - a_1}, \ \rho_2 = \frac{-a_1 - \sqrt{a_1 a_0}}{a_0 - a_1}$$

$$a_0 = \sum_{i=1}^{3} \frac{\beta_i^2}{B_i}, \quad a_1 = \sum_{i=1}^{3} \frac{\beta_i^2}{A_i}$$
 . ρ_{β} 0 ρ_{β} 1 . ρ_{1} . ρ_{2} 1 . ρ_{1}

 ho_eta .

$$\rho_{\beta} = \frac{-a_1 + \sqrt{a_1 a_0}}{a_0 - a_1} \tag{3.6}$$

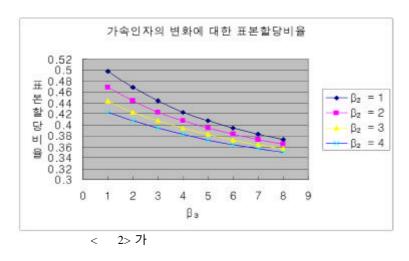
4.

가

 λ_i au

.

$$\lambda_i \qquad \qquad \lambda_i$$


< 1> < 2> .

2> < 1> 30

0.01 $\beta_1 = 2$ β_2

1, 2, 3, 4 β_3 . 7

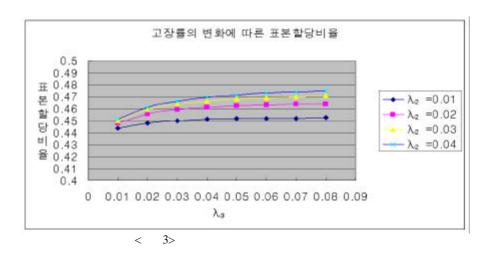
 β_3 , β_2

< 3> < 1>

30

가

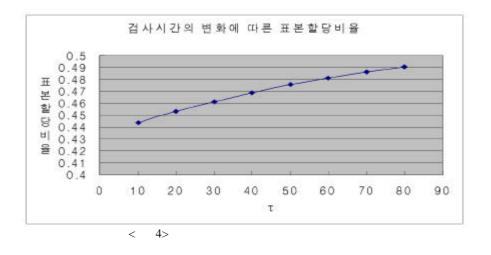
2


 λ_2

0.01, 0.02, 0.03, 0.04

 λ_3

 λ_2


 $. \quad \lambda_1 = 0.01$

< 4> < 1> フト 2

30

0.01

가 가

)

 ρ_{β}

가 가 가 가

가 가

, V_{λ} V_g 0.5 (trivial solution) ρ ρ 가 0.0 (trivial solution) , V_{β} (3.6)

가

			< 1>가		П				
β_1	$oldsymbol{eta}_2$	$oldsymbol{eta}_3$	$ ho_{eta}$	V_{eta}	$oldsymbol{eta}_1$	$oldsymbol{eta}_2$	β_3	$ ho_{eta}$	V_{β}
		1	0.50000	4.03603		1	1	0.48776	5.02871
	1	2	0.48009	4.80434			2	0.45928	5.77 173
	1	3	0.45 14 1	5.53795			3	0.43713	6.48810
		4	0.42924	6.24603			4	0.4 1927	7.18659
		1	0.48009	4.80434		2	1	0.45928	5.77 173
	2	2	0.45 136	5.537 12			2	0.43709	6.48732
	2	3	0.42914	6.24384			3	0.4 19 19	7.18450
1		4	0.41130	6.93313	3		4	0.40437	7.86885
1		1	0.45 14 1	5.53795	3	3	1	0.43713	6.48810
	3	2	0.42914	6.24384			2	0.4 19 19	7.18450
	3	3	0.41125	6.93181			3	0.40432	7.86759
		4	0.39648	7.60734			4	0.39 177	8.54 120
		1	0.42924	6.24603		4	1	0.4 1927	7.18659
	4	2	0.41130	6.93313			2	0.40437	7.86885
		3	0.39648	7.60734			3	0.39 177	8.54 120
		4	0.38401	8.27239			4	0.38098	9.20643
	1	1	0.49832	4.53238	4	1	1	0.47640	5.52221
		2	0.46866	5.28856			2	0.45 148	6.25506
		3	0.44363	6.0 124 1			3	0.43 165	6.96564
		4	0.42383	6.7 1506			4	0.41541	7.66093
	2	1	0.46866	5.28856		2	1	0.45 148	6.25506
		2	0.44359	6.01160			2	0.43 162	6.96488
		3	0.42374	6.7 1292			3	0.41533	7.65890
2		4	0.40754	7.39936			4	0.40 169	8.34176
	3	1	0.44363	6.0 124 1		3	1	0.43 165	6.96564
		2	0.42374	6.7 1292			2	0.41533	7.65890
		3	0.40749	7.39807			3	0.40 164	8.34053
		4	0.39392	8.07240			4	0.38998	9.01381
	4	1	0.42383	6.7 1506		4	1	0.41541	7.66093
		2	0.40754	7.39936			2	0.40 169	8.34176
		3	0.39392	8.07240			3	0.38998	9.01381
		4	0.38234	8.73739			4	0.37988	9.67951

 $(, \lambda_1 = \lambda_2 = \lambda_3 = 0.01, \tau = 10, n = 30)$

		<	2>						
λ_1	λ_2	λ_3	$ ho_{eta}$	V_{β}	λ_1	λ_2	λ_3	$ ho_{eta}$	V_{β}
	0.01	0.01	0.44359	6.01160		0.01	0.01	0.44360	5.69218
		0.02	0.44831	4.99981			0.02	0.44697	4.51526
	0.01	0.03	0.45020	4.68355			0.03	0.44858	4.13385
		0.04	0.45113	4.5410			0.04	0.44955	3.95 155
		0.01	0.44831	4.99981		0.02	0.01	0.44697	4.51526
	0.02	0.02	0.45582	3.99388			0.02	0.45284	3.33961
	0.02	0.03	0.45923	3.68348			0.03	0.45597	2.95950
0.01		0.04	0.46112	3.54644	0.03		0.04	0.45795	2.77838
0.01		0.01	0.45020	4.68355	0.03	0.03	0.01	0.44858	4.13385
	0.03	0.02	0.45923	3.68348			0.02	0.45597	2.95950
	0.03	0.03	0.46364	3.37880			0.03	0.46015	2.58068
		0.04	0.46624	3.247 19			0.04	0.46289	2.40076
		0.01	0.45113	4.5410			0.01	0.44955	3.95 155
	0.04	0.02	0.46112	3.54644		0.04	0.02	0.45795	2.77838
		0.03	0.46624	3.247 19			0.03	0.46289	2.40076
		0.04	0.46938	3.12084			0.04	0.46620	2.22202
	0.01	0.01	0.44153	5.60762		0.01	0.01	0.44676	5.90836
		0.02	0.44544	4.51127			0.02	0.44974	4.64946
		0.03	0.44722	4.15927			0.03	0.45 120	4.23942
		0.04	0.44824	3.99349			0.04	0.45212	4.04 183
	0.02	0.01	0.44544	4.51127		0.02	0.01	0.44974	4.64946
		0.02	0.45208	3.41732			0.02	0.45502	3.39 128
		0.03	0.45546	3.06774	0.04		0.03	0.45790	2.98199
0.02		0.04	0.45752	2.90421			0.04	0.45977	2.78506
0.02		0.01	0.44722	4.15927	0.04		0.01	0.45 120	4.23942
	0.03	0.02	0.45546	3.06774		0.03	0.02	0.45790	2.98199
		0.03	0.45991	2.72053		0.03	0.03	0.46179	2.57343
		0.04	0.46274	2.55925			0.04	0.46439	2.377 19
	0.04	0.01	0.44824	3.99349		0.04	0.01	0.45212	4.04 183
		0.02	0.45752	2.90421			0.02	0.45977	2.78506
		0.03	0.46274	2.55925			0.03	0.46439	2.377 19
		0.04	0.46614	2.40017			0.04	0.46752	2.18162

(, $\beta_1 = \beta_2 = \beta_3 = 2$, $\tau = 10$, n = 30)

- [1] (1994). , 5 , 29-33,
- [2] (1995). , 2 , 2 , 395-403
- [3] , (1992). , , 19 , 2 , 10-15.
- [4] , (1995). , 8 , 2 , 121-132
- [5] , (1996). 7\ 4 , 14-28.
- [6] (1989). , , 2 , 61-78
- [7] Armitage, P. and Doll, R. (1961). Stochastic Models for Carcinogens, *Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability*, 19-38.
- [8] Bai, D. S. and Chung, S. W. (1992). Optimal Design of Partially Accelerated Life Tests for Exponential Distribution under Type Censoring, *IEEE transactions on Reliability*, 41, 3, 400-406.
- [9] Bai, D. S. and Chung, S. W., and chun, Y. R. (1993). Optimal Design of Partially Accelerated Life Tests for Lognormal Distribution under Type Censoring, *Reliability Engineering and System Sofety*, 40, 85-92.
- [10] Bhattacharyya, G. K. and Soejoeti, Z. (1981). On the Performance of Least Squares Estimator in Type- Censored Aaccelerated Life Tests, IAPQR Transactions-Jour. Ind. Assoc. for Productivity, *Quality and Reliability*, 6, 1, 39-55.
- [11] DeGroot, M. H. and Goel, P. K. (1979). Bayesian Estimation and Optimal Designs partially Accelerated Life Testing, *Naval Research Logistics Quarterly*, 26, 223-235.
- [12] Fettel, B. E., Johnston, D. R. and Morris, P. E. (1980). Accelerated Life Testing of Prothetic Heart Valves, *Medical Instrumentation*, 14, 161-164.
- [13] Glaser, R. E. (1984). Estimation for a Weibull Accelerated Life Testing Model, *Naval Research Logistics Quarterly*, 31, 559-570.
- [14] Hartley, H. O. and Sielken, R. L. (1977). Estimation of Safe Dose in Carcinogenic Experiments, *Biometrics*, 33, 1-30.
- [15] Kitagawa, K., Toriama, K., and Kanuma, Y. (1984). Reliability of Liquid Crystal Display, *IEEE Transactions on Reliability*, R-33, 3, 213-218.

- [16] Klein, J. P. and Basu, A. P. (1980). Accelerated Life Tests under Competing Weibull Causes of Failure, *Communications in Statistics Theory and Methods*, 10, 2073-2100.
- [17] Klein, J. P. and Basu, A. P. (1982). Accelerated Life Tests under Competing Weibull Causes of Failure, *Communications in Statistics Theory and Methods*, 11, 2271-2286.
- [18] Mann, N. R., Schafer, R. E., and Singpurwalla, N. D. (1974). *Methods for Statistical Analysis of Reliability and Lfe Data*, John Wiley & Sons, New York.
- [19] Miller, R. and Nelson, W. (1983). Optimum Simple Step Stress Plans for Accelerated Life Testing, *IEEE Transactions on Reliability*, 32, 59-65.
- [20] Nelson, W. B. (1980). Statistical Methods for Accelerated Life Test Data-The Inverse Power Law Model, General Electric Research & Development TIS Report 71-C-001.
- [21] Nelson, W. and Hahn, G. J. (1972). Linear Estimation of a Regression Relationship from Censored Data Part 1. Simple Methods and their Application, *Technometrics*, 14, 247-267.
- [22] Nelson, W. and Hahn, G. J. (1973). Linear Estimation of a Regression Relationship from Censored Data - Part 2. Best Linear Unbiased Estimation and Theory", *Technometrics*, 15, 133-150.
- [23] Nelson, W. B. and Kielpinski, T. J. (1975). Optimum Accelerated Life Tests for Normal and Lognormal Life Distributions, *IEEE Transactions on Reliability*, R-24, 310-320.
- [24] Nelson, W. B. and Kielpinski, T. J. (1976). Theory for Optimum Censored Accelerated Tests for Normal and Lognormal Life Distributions, *Technometrics*, 18, 105-114.