Bootstrapping Stationary Sequences by the

Nadaraya- Watson Regression Estimator

Cheolyong Park and Tae Yoon Kim

Keimyung University

June 21, 2002



1. Introduction

e Classical bootstrap: X ;,X,,....,X, ~ iid F
Suppose we like to estimate Var (X ,).

step 1) Calculate F,, the empirical cdf of X ,X,,....X,.
step 2) Generate X ,X,,...,X, ~ iid F,.
Calculate X .

step 3) Repeat step 2 a large number, say B, of times.
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Based on bootstrapped copies X, , X, ,.., X, ,

we calculate a bootstrap estimator of Var (X ,) by
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e The classical bootstrap fails if X ,,X,,...,X, are dependent.

Clear since bootstrap copies X ;,X,,...,X, are independent.



e Two modified versions for stationary time series:
1) Block bootstrap

2) Parametric model fitting

e Block bootstrap
Consider n- 1+ 1 blocks of | consecutive observations
Byi= (X1,....X 1), Bo= (Xpyoot, X 151) ey Brojz1= (X n ie10e0X 1) .
We apply the classical bootstrap to these blocks.
Suppose k= n/l is a positive integer.

We choose k blocks B, ,B;,...,B; by the classical bootstrap.
A Dbootstrap copy is obtained by (B;,B,...,B;).

If k is not an integer, we took k=[n/l]+1 and delete
redundant elements over n.
It is critical to choose the right block size I.
If 1 is large, we can maintain dependence structure but
we make only a few possible copies.
If 1 is small, we can make various copies but

we can not maintain dependence structure.



e Parametric model fitting
We assume that the series follows a parametric model.

We fit the model and obtain the residuals e;,e,,...,e,.

The classical bootstrap is applied to these residuals.
A bootstrap copy is "fitted values+bootstrapped residuals".
It is critical to know the right parametric model.
True model is hardly known in advance.
eg.) AR(1) model
X .= ¢.X, .+ e is fitted to the series.

A bootstrapped residuals ej,e,,...,e, are obtained.

A bootstrap copy is obtained by X ;= X, ,+ e;.

e |dea of our method: nonparametric model fitting
Our method is the same as parametric model fitting except that
we fit a nonparametric model by a kernel regression estimator.

Here we use the Nadaraya-Watson regression estimator.



2. Our Method

e Suppose the data follows a p-th order autoregressive model
X = F(X 1, X p) + &
where {g} is a white noise process. Then the conditional mean
EX X 1= Xg, o, X p= Xp) = F(Xg, o0 Xp)

can be estimated by the Nadaraya-Watson regression estimator

: Xi- X
:;flxtile( h )
N Xi= X
t:;rlille( h )

where K is a kernel function and h is a smoothing parameter.

1f\(Xli--- !Xp) = t

e Procedures
1) Estimate the conditional mean function by the N-W estimator

and then we obtain the residuals e;= X - f (X 1,....X () -

2) We obtain a sequence of bootstrapped residuals {eI} by the

classical bootstrap.
3) A bootstrapped copy of the time series data is obtained by

the formula

X:: f\(x*t—la---1X*t—p)+e:! (X;:XOi---1XTp+1:X—p+1)! t: 1!2!-"’n'



e The choice of the order p is critical.

But the order misspecification is not so problematic compared to
the dependence corruption of the block bootstrap.

We mainly focus on the case where p= 1.

e If the order is correct, the choice of smoothing parameter h is

critical. It is somewhat related to the choice of block size I.
If his large, then f(x)= X with e =X,- X.
Corresponds to the block bootstrap with 1= 1.
If h is small, then f(X,.,) =X, with e=0.

Corresponds to the block bootstrap with 1= n.



3. Monte Carlo Simulation Study

e Our method with p= 1 is compared to the block bootstrap.
e Simulation models
- the first order models
1) Linear autoregressive model of order 1, denoted by AR(1):
X= 08X, 1+ & with g i.i.d. N(0,0.36).
2) Threshold autoregressive model, denoted by TAR;
X = 0.528Z,
where Z,= (0.9Z, ,+ e )I(Z, <- 2.5)+ (0.8Z, .+ &)l (Z,. ;> 2.5)
with &, i.i.d.N(0,1).
3) Bilinear model, denoted by BL;
X,=0.254Z, where Z,=0.4Z, ;+ 0.8Z, 16, 1+ &
with ¢, i.i.d N(0,1).
- models of misspecified orders
1) Linear autoregressive model of order 2, denoted by AR(2);
X = 1.372X . 1- 0.677X (. ,+ & With g, ii.d. N(0,0.179).
2) Moving average model of order 1, denoted by MA (1);

X = &+ 0.5¢,.; With & 1i.d. N(0,0.8).



e Simulation setup

1) We choose the sample size n= 128 and all our results are
based on 200 simulations and 500 bootstrap copies.

2) For each simulation, we generate the copies using the N-W
bootstrap with bandwidth h=0.1,0.2,...,1.0 as well as using the
block bootstrap with block length 1= 1,2,...,20.

3) Measure of performance is evaluated by RMSE(relative M SE)
E(/ nVar(X })- on)zldi
where ¢,=\ nvar(X,).

e Simulation results for the first order models are shown in

Tables 1 and 2.
- Our method is better in AR(1), TAR and worse in BL.

e Simulation results for the models of misspecified orders are
shown in Table 3.

- Our method is better in MA (1) and worse in AR(2).

- Optimal | for AR(2) by Buhiman and Kinsch (1999) is 9.

Our method is as good as the block bootstrap near 1= 9.



T able 3.1: Relative mean- square errors of our method for the bandwidth

h=0.1,0.2,...,1.0
h 0.1 0.2 03 04 05 06 0.7 08 09 10
AR(1) | 0742 .0895 .1100 1604 2120 2613 3028 3327 3592 3770
TAR 1491 1665 2130 2774 3388 3901 A268 4543 4735 4869
BL .2688 4599 8053 1.189 1.122 1.087 1.067 1.096 1.045 1.096

T able 3.2: Relative

mean square errors of the block bootstrap for the block

size I=1,2,..,20.

| 1 2 3 4 5 6 7 8 9 10
AR(1) | 4514 | 3182 | 2427 | 1925 | 1595 | .1381 | .1224 | .1108 | .1031 | .0969
TAR | 5399 | 4120 | 3381 | 2852 | 2552 | 2289 | 2081 | .1928 | .1830 | .1764
BL 3195 | 2423 | 2235 | 2171 | 2187 | 2202 | 2242 | 2253 | 2277 | 2335

| 11 12 13 14 15 16 17 18 19 20
AR(1) | 0946 | 0908 | .0909 | .0907 | .0905 | .0902 | .0925 | .0948 | .0949 | .0988
TAR | 1717 | .1675 | .1646 | .1653 | .1655 | .1633 | .1656 | .1699 | .1696 | .1726
BL 2341 | 2390 | 2436 | 2462 | 2463 | 2512 | 2498 | 2547 | 2567 | .2556




T able 3.3: Relative mean square errors of our method for h=10.1,0.2,...,1.0 and
the block bootstrap for 1= 1,2,...,20.

h 0.1 0.2 03 04 05 06 0.7 08 09 10

AR(2)| 1087 7419 4310 2060 0971 0494 0312 .0309 0364 0423

MA (1) | .0303 0274 0216 0163 .0145 0143 0151 0182 0209 0245

I 1 2 3 4 5 6 7 8 9 10

AR(2) | .0944 0159 0247 0453 .0548 0466 0397 0341 0324 0304

MA (1) | .0677 0214 0156 0162 0176 0191 0229 0240 0266 .0300

AR(2)| .0329 0336 0377 .0380 .0390 0424 0436 0491 0531 0523

MA (1) | .0324 .0363 0401 0431 0449 0513 0501 .0566 .0560 0564




4. Conclusion

e Our method might be a better bootstrap scheme for time series
data in most cases.

- It might be useful to provide some theoretical justification.

e For a practical purpose, we need to develop an automatic
bandwidth selection method.

- A method based on cross validation is available but performs
poorly in a simulation study we had conducted.

- A bandwidth selector achieving the independence of residuals

efficiently might be a good alternative.
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