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1. Introduct ion

Classical boot str ap : X 1 , X 2 , , X n iid F

Suppose w e like to estim ate Var ( X n ) .

step 1) Calculate F n , the empirical cdf of X 1 , X 2 , , X n .

step 2) Generate X *
1 , X *

2 , , X *
n iid F n .

Calculate X *
n .

step 3) Repeat step 2 a large number , say B , of times .

Based on boot str apped copies X *
n

( 1)
, X *

n

(2)
, , X *

n

( B )
,

w e calculate a boot str ap estim ator of Var ( X n ) by

B

i = 1
{ X *

n

( i)
- X *

n }
2

B - 1 , w here X *
n =

B

i = 1
X *

n

( i)

B .

T he classical boot str ap fails if X 1 , X 2 , , X n are dependent .

Clear since boot str ap copies X *
1 , X *

2 , , X *
n are independent .
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T w o modified ver sion s for st ationary time series :

1) Block boot str ap

2) Parametric model fit ting

Block boot str ap

Con sider n - l + 1 block s of l con secutive observation s

B 1 = (X 1 , ,X l ) , B 2 = (X 2 , , X l + 1 ) , , B n - l + 1 = (X n - l + 1 , ,X n ) .

We apply the classical boot str ap to these block s .

Suppose k = n / l is a positive integer .

W e choose k blocks B i 1
, B i2

, ,B i k
by the classical boot strap .

A boot strap copy is obt ained by ( B i1
, B i2

, ,B i k
).

If k is not an integer , w e took k = [ n / l] + 1 and delete

redundant element s over n .

It is critical to choose the right block size l .

If l is large, w e can m aint ain dependence structure but

w e m ake only a few possible copies .

If l is sm all, w e can m ake variou s copies but

w e can not m aint ain dependence structure.
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Parametric model fit ting

We assume that the series follow s a parametric model.

We fit the model and obtain the residuals e 1 , e 2 , , e n .

T he classical boot str ap is applied to these residuals .

A boot str ap copy is "fit ted values+boot str apped residuals".

It is critical to know the right parametric model.

T rue model is hardly known in advance.

e.g .) AR (1) model

X t = 1X t - 1 + e t is fitted to the series .

A boot strapped residuals e *
1 , e *

2 , , e *
n are obtained .

A boot strap copy is obtained by X *
t = 1 X *

t - 1 + e *
t .

Idea of our method: nonparametric model fit ting

Our method is the same as parametric model fit ting except that

w e fit a nonparametric model by a kernel regression estim ator .

Here w e u se the Nadaraya- W at son regression estim ator .
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2. Our Method

Suppose the data follow s a p - th order autoregressive model

X t = f (X t - 1 , ,X t - p ) + t

where { t } is a white noise process . T hen the conditional mean

E (X t |X t - 1 = x 1 , ,X t - p = x p ) = f (x 1 , , x p )

can be estim ated by the Nadaraya- W at son regression estim ator

f (x 1 , ,x p ) =

n

t = p + 1
X t

p

i = 1
K ( x i - X t - i

h )
n

t = p + 1

p

i = 1
K ( x i - X t - i

h )
where K is a kernel function and h is a smoothing parameter .

Procedures

1) E stim ate the conditional mean function by the N - W estim ator

and then w e obtain the residuals e t = X t - f (X t - 1 , ,X t - p ) .

2) We obtain a sequence of boot strapped residuals {e *
t } by the

classical boot strap .

3) A boot str apped copy of the time series data is obt ained by

the formula

X *
t = f (X *

t - 1 , ,X *
t - p) + e *

t , (X *
0 = x 0 , ,X *

- p + 1 = x - p + 1) , t = 1, 2 , , n .
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T he choice of the order p is critical.

But the order misspecification is not so problem atic compared to

the dependence corruption of the block boot str ap .

We m ainly focu s on the case where p = 1 .

If the order is correct , the choice of smoothing parameter h is

critical. It is somewhat related to the choice of block size l .

If h is large, then f (x ) = X with e t = X t - X .

Corresponds to the block boot str ap with l = 1 .

If h is sm all, then f (X t - 1) = X t with e t = 0 .

Corresponds to the block boot str ap with l = n .
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3. Monte Carlo Simulation Study

Our method with p = 1 is compared to the block boot str ap .

Simulation models

- the fir st order models

1) Linear autoregressive model of order 1, denoted by AR (1):

X t = 0 .8X t - 1 + t w ith t i . i .d . N (0 , 0 .36) .

2) T hreshold autoregressive model, denoted by T AR;

X t = 0 .528Z t

where Z t = (0 .9Z t - 1 + t )I (Z t - 1 - 2 .5) + ( 0 . 8Z t - 1 + t )I (Z t - 1 >- 2 .5)

with t i . i .d . N (0 , 1) .

3) Bilinear model, denoted by BL;

X t = 0 .254Z t where Z t = 0 .4Z t - 1 + 0 .8Z t - 1 t - 1 + t

with t i . i .d N ( 0 , 1) .

- models of misspecified order s

1) Linear autoregressive model of order 2, denoted by AR (2);

X t = 1.372X t - 1 - 0 .677X t - 2 + t with t i.i.d . N (0 , 0 . 179) .

2) Moving average model of order 1, denoted by MA (1);

X t = t + 0 .5 t - 1 with t i.i.d . N (0 , 0 .8) .
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Simulation setup

1) We choose the sample size n = 128 and all our result s are

based on 200 simulations and 500 boot str ap copies .

2) For each simulation , w e generate the copies using the N - W

boot strap with bandwidth h = 0 . 1,0 .2 , , 1.0 as w ell as u sing the

block boot str ap with block length l = 1, 2 , , 20 .

3) Measure of perform ance is evaluated by RMSE (relative MSE )

E ( n Var (X *
n ) - n)

2

/ 2
n

where n = n Var (X n ) .

Simulation result s for the fir st order models are shown in

T ables 1 and 2.

- Our method is better in AR (1), T AR and w orse in BL.

Simulation result s for the models of misspecified order s are

shown in T able 3.

- Our method is better in MA (1) and w or se in AR (2).

- Optim al l for AR (2) by Bühlm an and Künsch (1999) is 9.

Our method is as good as the block boot strap near l = 9 .
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T able 3.1: Relative mean- square errors of our method for the bandwidth

h = 0 . 1, 0 .2 , , 1 .0

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A R (1) .0742 .0895 .1100 .1604 .2120 .2613 .3028 .3327 .3592 .3770

TA R .1491 .1665 .2130 .2774 .3388 .3901 .4268 .4543 .4735 .4869

B L .2688 .4599 .8053 1.189 1.122 1.087 1.067 1.096 1.045 1.096

T able 3.2: Relative mean square error s of the block boot str ap for the block

size l = 1, 2 , , 20 .

l 1 2 3 4 5 6 7 8 9 10

A R (1) .4514 .3182 .2427 .1925 .1595 .1381 .1224 .1108 .1031 .0969

TA R .5399 .4120 .3381 .2852 .2552 .2289 .2081 .1928 .1830 .1764

B L .3195 .2423 .2235 .2171 .2187 .2202 .2242 .2253 .2277 .2335

l 11 12 13 14 15 16 17 18 19 20

A R (1) .0946 .0908 .0909 .0907 .0905 .0902 .0925 .0948 .0949 .0988

TA R .1717 .1675 .1646 .1653 .1655 .1633 .1656 .1699 .1696 .1726

B L .2341 .2390 .2436 .2462 .2463 .2512 .2498 .2547 .2567 .2556
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T able 3.3: Relative mean square errors of our method for h = 0 . 1, 0 .2 , , 1 .0 and

the block boot strap for l = 1, 2 , , 20 .

h 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A R (2) 1.087 .7419 .4310 .2060 .0971 .0494 .0312 .0309 .0364 .0423

MA ( 1) .0303 .0274 .0216 .0163 .0145 .0143 .0151 .0182 .0209 .0245

l 1 2 3 4 5 6 7 8 9 10

A R (2) .0944 .0159 .0247 .0453 .0548 .0466 .0397 .0341 .0324 .0304

MA ( 1) .0677 .0214 .0156 .0162 .0176 .0191 .0229 .0240 .0266 .0300

l 11 12 13 14 15 16 17 18 19 20

A R (2) .0329 .0336 .0377 .0380 .0390 .0424 .0436 .0491 .0531 .0523

MA ( 1) .0324 .0363 .0401 .0431 .0449 .0513 .0501 .0566 .0560 .0564
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4. Conclusion

Our method might be a better boot str ap scheme for time series

data in most cases .

- It might be u seful to provide some theoretical ju stification .

For a practical purpose, w e need to develop an autom atic

bandwidth selection method.

- A method based on cross validation is available but perform s

poorly in a simulation study w e had conducted .

- A bandwidth selector achieving the independence of residuals

efficient ly might be a good alternative .
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