Bootstrapping Stationary Sequences by the Nadaraya-Watson Regression Estimator

Cheolyong Park and Tae Yoon Kim Keimyung University

June 21, 2002

1. Introduction

• Classical bootstrap: $X_1, X_2, \dots, X_n \sim iid F$

Suppose we like to estimate $Var(\overline{X_n})$.

step 1) Calculate F_n , the empirical cdf of X_1, X_2, \dots, X_n .

step 2) Generate $X_1^*, X_2^*, \dots, X_n^* \sim iid F_n$.

Calculate $\overline{X_n^*}$.

step 3) Repeat step 2 a large number, say B, of times.

Based on bootstrapped copies $\overline{X_n^*}^{(1)}$, $\overline{X_n^*}^{(2)}$, ..., $\overline{X_n^*}^{(B)}$, we calculate a bootstrap estimator of $Var(\overline{X_n})$ by $\frac{\sum_{i=1}^{B} \left\{ \overline{X_n^*}^{(i)} - \overline{\overline{X_n^*}} \right\}^2}{B - 1}$, where $\overline{\overline{X_n^*}} = \frac{\sum_{i=1}^{B} \overline{X_n^*}^{(i)}}{B}$.

• The classical bootstrap fails if $X_1, X_2, ..., X_n$ are dependent. Clear since bootstrap copies $X_1^*, X_2^*, ..., X_n^*$ are independent.

- Two modified versions for stationary time series:
 - 1) Block bootstrap
 - 2) Parametric model fitting
- Block bootstrap

Consider n - l + 1 blocks of l consecutive observations

$$B_{1} = (X_{1}, \dots, X_{l}), B_{2} = (X_{2}, \dots, X_{l+1}), \dots, B_{n-l+1} = (X_{n-l+1}, \dots, X_{n}).$$

We apply the classical bootstrap to these blocks.

Suppose k = n/l is a positive integer.

We choose k blocks $B_{i_1}, B_{i_2}, \dots, B_{i_k}$ by the classical bootstrap.

A bootstrap copy is obtained by $(B_{i_1}, B_{i_2}, \dots, B_{i_k})$.

- If k is not an integer, we took $k = \lfloor n/l \rfloor + 1$ and delete redundant elements over n.
- It is critical to choose the right block size *l*.
 - If *l* is large, we can maintain dependence structure but we make only a few possible copies.
 - If *l* is small, we can make various copies but we can not maintain dependence structure.

• Parametric model fitting

We assume that the series follows a parametric model. We fit the model and obtain the residuals e_1, e_2, \dots, e_n . The classical bootstrap is applied to these residuals. A bootstrap copy is "fitted values+bootstrapped residuals". It is critical to know the right parametric model.

True model is hardly known in advance.

e.g.) AR(1) model

 $X_t = \widehat{\phi}_1 X_{t-1} + e_t$ is fitted to the series.

A bootstrapped residuals $e_1^*, e_2^*, \dots, e_n^*$ are obtained.

A bootstrap copy is obtained by $X_t^* = \widehat{\phi}_1 X_{t-1}^* + e_t^*$.

 Idea of our method: nonparametric model fitting
 Our method is the same as parametric model fitting except that we fit a nonparametric model by a kernel regression estimator. Here we use the Nadaraya-Watson regression estimator.

2. Our Method

• Suppose the data follows a *p*-th order autoregressive model $X_{t} = f(X_{t-1}, \dots, X_{t-p}) + \varepsilon_{t}$

where $\{\varepsilon_t\}$ is a white noise process. Then the conditional mean

$$E(X_{t}|X_{t-1} = x_{1}, \dots, X_{t-p} = x_{p}) = f(x_{1}, \dots, x_{p})$$

can be estimated by the Nadaraya-Watson regression estimator

$$\hat{f}(x_1, \dots, x_p) = \frac{\sum_{t=p+1}^{n} X_t \prod_{i=1}^{p} K\left(\frac{x_i - X_{t-i}}{h}\right)}{\sum_{t=p+1}^{n} \prod_{i=1}^{p} K\left(\frac{x_i - X_{t-i}}{h}\right)}$$

where K is a kernel function and h is a smoothing parameter.

• Procedures

1) Estimate the conditional mean function by the N-W estimator and then we obtain the residuals $e_t = X_t - \hat{f}(X_{t-1}, \dots, X_{t-p})$.

2) We obtain a sequence of bootstrapped residuals $\{e_t^*\}$ by the classical bootstrap.

3) A bootstrapped copy of the time series data is obtained by the formula

$$X_{t}^{*} = \hat{f}(X_{t-1}^{*}, \dots, X_{t-p}^{*}) + e_{t}^{*}, \quad (X_{0}^{*} = x_{0}, \dots, X_{-p+1}^{*} = x_{-p+1}), \quad t = 1, 2, \dots, n.$$

• The choice of the order p is critical.

But the order misspecification is not so problematic compared to the dependence corruption of the block bootstrap.

We mainly focus on the case where p = 1.

• If the order is correct, the choice of smoothing parameter h is critical. It is somewhat related to the choice of block size l.

If *h* is large, then $\hat{f}(x) = \overline{X}$ with $e_t = X_t - \overline{X}$.

Corresponds to the block bootstrap with l=1.

If h is small, then $\hat{f}(X_{t-1}) = X_t$ with $e_t = 0$.

Corresponds to the block bootstrap with l = n.

3. Monte Carlo Simulation Study

- Our method with p = 1 is compared to the block bootstrap.
- Simulation models
 - the first order models
 - 1) Linear autoregressive model of order 1, denoted by AR(1): $X_t = 0.8X_{t-1} + \varepsilon_t$ with ε_t i.i.d. N(0, 0.36).
 - 2) Threshold autoregressive model, denoted by TAR;

$$X_{t} = 0.528 Z_{t}$$

where $Z_t = (0.9Z_{t-1} + \varepsilon_t)I(Z_{t-1} \le -2.5) + (0.8Z_{t-1} + \varepsilon_t)I(Z_{t-1} \ge -2.5)$

with ε_t i.i.d.N(0, 1).

3) Bilinear model, denoted by BL;

$$X_t = 0.254Z_t$$
 where $Z_t = 0.4Z_{t-1} + 0.8Z_{t-1}\varepsilon_{t-1} + \varepsilon_t$

with ε_t i.i.d N(0, 1).

- models of misspecified orders
 - 1) Linear autoregressive model of order 2, denoted by AR(2); $X_t = 1.372X_{t-1} - 0.677X_{t-2} + \varepsilon_t$ with ε_t i.i.d. N(0, 0.179).
- 2) Moving average model of order 1, denoted by MA(1);

 $X_t = \varepsilon_t + 0.5\varepsilon_{t-1}$ with ε_t i.i.d. N(0, 0.8).

• Simulation setup

1) We choose the sample size n = 128 and all our results are based on 200 simulations and 500 bootstrap copies.

2) For each simulation, we generate the copies using the N-W bootstrap with bandwidth h = 0.1, 0.2, ..., 1.0 as well as using the block bootstrap with block length l = 1, 2, ..., 20.

3) Measure of performance is evaluated by RMSE(relative MSE)

$$E\left(\sqrt{n Var(\overline{X_n^*})} - \sigma_n\right)^2 / \sigma_n^2$$

where $\sigma_n = \sqrt{n Var(\overline{X_n})}$.

• Simulation results for the first order models are shown in Tables 1 and 2.

- Our method is better in AR(1), TAR and worse in BL.

• Simulation results for the models of misspecified orders are shown in Table 3.

- Our method is better in MA(1) and worse in AR(2).
- Optimal *l* for AR(2) by Bühlman and Künsch (1999) is 9.
 Our method is as good as the block bootstrap near *l*= 9.

h	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
AR(1)	.0742	.0895	.1100	.1604	.2120	.2613	.3028	.3327	.3592	.3770
TA R	.1491	.1665	.2130	.2774	.3388	.3901	.4268	.4543	.4735	.4869
BL	.2688	.4599	.8053	1.189	1.122	1.087	1.067	1.096	1.045	1.096

Table 3.1: Relative mean-square errors of our method for the bandwidth h = 0.1, 0.2, ..., 1.0

Table 3.2: Relative mean square errors of the block bootstrap for the block size l = 1, 2, ..., 20.

l	1	2	3	4	5	6	7	8	9	10
AR(1)	.4514	.3182	.2427	.1925	.1595	.1381	.1224	.1108	.1031	.0969
TA R	.5399	.4120	.3381	.2852	.2552	.2289	.2081	.1928	.1830	.1764
BL	.3 195	.2423	.2235	.2171	.2187	.2202	.2242	.2253	.2277	.2335
l	11	12	13	14	15	16	17	18	19	20
AR(1)	.0946	.0908	.0909	.0907	.0905	.0902	.0925	.0948	.0949	.0988
TA R	.1717	.1675	.1646	.1653	.1655	.1633	.1656	.1699	.1696	.1726
BL	.2341	.2390	.2436	.2462	.2463	.2512	.2498	.2547	.2567	.2556

h	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
A R (2)	1.087	.7419	.4310	.2060	.0971	.0494	.0312	.0309	.0364	.0423
MA (1)	.0303	.0274	.0216	.0163	.0145	.0143	.0151	.0182	.0209	.0245
l	1	2	3	4	5	6	7	8	9	10
A R (2)	.0944	.0159	.0247	.0453	.0548	.0466	.0397	.0341	.0324	.0304
MA (1)	.0677	.0214	.0156	.0162	.0176	.0191	.0229	.0240	.0266	.0300
l	11	12	13	14	15	16	17	18	19	20
AR(2)	.0329	.0336	.0377	.0380	.0390	.0424	.0436	.0491	.0531	.0523
MA (1)	.0324	.0363	.0401	.0431	.0449	.0513	.0501	.0566	.0560	.0564

Table 3.3: Relative mean square errors of our method for h = 0.1, 0.2, ..., 1.0 and the block bootstrap for l = 1, 2, ..., 20.

4. Conclusion

• Our method might be a better bootstrap scheme for time series data in most cases.

- It might be useful to provide some theoretical justification.

• For a practical purpose, we need to develop an automatic bandwidth selection method.

- A method based on cross validation is available but performs poorly in a simulation study we had conducted.

- A bandwidth selector achieving the independence of residuals efficiently might be a good alternative.