초고속 대용량 광전송 기술

김근영, 이용기, 송길호
KT 통신망 연구소 광전송망 연구팀

Ultra high speed and high capacity optical transmission techniques

Geun-Young Kim, Yong-Gi Lee, Kil-Ho Song
Optical Technology Division, Telecommunications Network Laboratory, KT

Abstract - ADSL, Metro Ethernet 등 가정하게 넓은 대역폭을 탑재하는 기술이 서비스 영역에 적용되고 있음에 따라 이를 원활히 수용할 수 있는 초고속 대용량 기간장 구축기술이 필요하다. 현재 사용되는 기술로는 2.5Gbps 또는 10Gbps의 전송속도를 갖는 수실 체널을 각각 파장이 다른 광주파대(optical carrier)에 넣어 관리적으로 다중화한 펜년 간극의 광신호를 통해 전송시키는 광다중화(Wavelength Division Multiplexing, WDM) 기술이 광범위하게 사용되고 있다. 본 논문에서는 세밀한 실용 속도를 40Gbps 중간 주파수 또는 증폭기 이득 대역폭을 확장시키는 차널 수를 증가시키는 수 THz의 전송용량을 수천 km 전송시키는데 필요한ちゃん 광중국기 기술, FEC 기술, 변조포맷, 분산관리(Dispersion management)기술 등의 핵심기술을 소개한다.

1. 서론

통신사가 가지고 있는 인프라의 전송용량을 증가시키는 방법으로 비드롭을 확장시키지 않고 새로운 기술을 사용하여 전송용량을 증가시키는 것이 필요하다. 본 논문에서는 광다중화(WDM) 기술을 사용하여 초고속 대용량 기간장 구축하는데 필요한 핵심기술 중 채널속도 고속화에 따른 변조포맷, 광중국기 기술, FEC, 분산관리 기술에 대해 소개한다.

2. 본론

2.1 변조포맷

스페크트럼 효율은 채널간격에 대한 채널속도의 비로 정의되는 것으로 스펙트럼 공유 공간의 범위에 해당된다. 즉 이용 가능한 대역폭이 데이터에 의해 얼마나 사용되는지에 달려있다. 채널 간격이 25GHz이고 채널 속도가 100Gbit/s인 경우 채널 간격이 100GHz이고 채널 속도가 40Gbit/s인 경우의 스펙트럼 효율은 0.48bit/s/Hz로 동일하다. 따라서, 스펙트럼 효율을 증가시키기 위해서는 채널 간격을 줄이거나 채널속도를 증가시켜야 한다. 그림 1은 최근 연구에 발표된 테라급 전송기술 결과에 밝혀진 랜드스케이프 전송기술 결과를 도출된 효율을 측정한 다. 전송용량을 증가시키기 위해서는 증폭기의 이득 대역폭을 확장시키아 더 많은 채널을 수용하거나, 스펙트럼 효율을 증가(그림에서 직선의 기계구를 증가시켜야 한다)할 수 있다. 스펙트럼 효율을 증가시키기ために RZ(Return to Zero)(1), CS-RZ(Carrier Suppressed RZ)(2), Optical Duobinary(3), Optical SSB(Single Side Band)(4), VSB(Vertial Side Band)-like filtering(5), Polarization Division Multiplexing(PDM)/ Demultiplexing(6)등 새로운 방식의 변조포맷이나 필터링 기술에 대한 연구가 필요하다.

RZ 변조포맷은 "1" 비트를 나타내는 폐밀기가 타일 습트보다 좁은 즉, 폐밀 기계신호가 비등간격 보다는 짧은 폐밀이다. RZ 폐밀은 NRZ에 비해 수신기에서 더 큰 아웃래임을 얻을 수 있으므로 수신감도를 향상시킬 수 있지만, 같은 peak 파워일 경우 NRZ에 비해 폐밀화 대

![그림 1 WDM 전송용량 증가 추세](image1)

그림 2 변조포맷에 따른 스펙트럼
2.2 랜던 증폭기술

광신호에 입력되는 광신호의 세기를 중분히 크게 조정할 경우, 전송속도가 2.5Gbit/s에서 10Gbit/s, 40Gbit/s에서도 증폭할 경우, 현재 유력한 OSNR(10^10@10G, 10^12@10G, 10^15@40G)은 각각 20dB, 26dB, 33dB로 약 6dB씩 증가한다. 40G 전송에 필요한 OSNR를 얻기 위해서는 입력광신호의 세기를 증폭거리(원거리)에 비례하여, 세기를 증폭거리에 따라 감소한 후, 현재 1G으로 인해 입력광신호의 세기를 증가시키는 것이 있으므로 이를 통해 증폭한 원소가 개선된다. 따라서, 증폭기술이 40G 전송을 위해서는 랜던 증폭기술을 이용하여 OSNR에 영향을 미치는 잡음수치를 낮추어 OSNR의 확보를 둘러싼다. 광충돌 매개체로 풍도가능한 중앙정을 사용하는 EDFA와 달리 랜던은 자체를 이용해 파라메터를 조정할 수 있는 유연한 속도가 시동한 것으로 보여, 12~13THz(100nm) 밖으로 빠져서, 최대 이득을 나타낸다. 랜던 증폭기는 다른 광충돌 매개체에 비해 광축 광원의 파장 선택으로 10THz 이상의 높은 유연성을 이득을 얻는 도움을 얻을 수 있다. 스트레인 증폭 불에 해당하는 OSNR 마진 확보를 통해 전송거리 증폭거리로 근거가 된다. 전송속도 증가 기능을 가능하게 한다.

2.3 FEC 기술

FEC 전송에 적용된 FEC는 redundancy 비트를 두어 전송신호가 발생하는 오류를 교정하는 오류정정 및 오류방식의 방식으로 초가지 전송에 따른 광신호의 품질 유지, 분산 및 비선형 현상으로 인한 신호의 퍼포먼스를 개선할 수 있는 BER 마진을 확보하는 방법으로 해제 전송시스템에서는 오해 전송에 사용되는 방식이다. SONET/SDH 시스템이 성능 감사를 위해 사용하는 BIP-8에 모티머 병렬은 (B1, B2, B3, B4) 전송선 신호의 실제 비트 에러율을 운용자에게 보여 주는 반면, FEC는 감지된 에러율 이하의 FEC 기능을 적용한 후 정정된 에러율을 보여 주는 것으로 전송신호에 실제 일반적으로 정상동작이 발생하지 않는지 알 수 있게 해준다. FEC 채널방식은 전송신호의 프레임 내에 사용하지 않은 비트를 에러 감지기와 정정을 위해 이용함으로써 원래 신호의 원래의 bit rate를 갖는 것과의 redundancy 비트로의 변화를 경감시키는 is of band FEC(weak FEC)와 원래 신호 외에 6%~23% 정도의 redundancy 비트를 두어 bit rate를 경감시키는 out of band FEC(strong FEC)의 두 가지 방식이 있다.

Out of band FEC을 사용할 경우, redundancy 비트를 강화한 경우 전송속도가 증가(신호 대폭 증가)에 따라 수신기의 데이터를 증가한 경우, 전송 속도가 증가한다는 것을 알 수 있다. B1, B2, B3, B4는 0dB 초파래와 비슷한 속도에서 40G 전송에 있어서 전송에 두어 bit rate를 경감시키는 out of band FEC(strong FEC)의 두 가지 방식이 있다.

확용 시스템 및 ITU-T G.975에서는 오류정정 방식으로 약 7%의 redundancy 비트를 사용하는 Reed Soloman (255,239) 코딩 방식을 권고하고 있지만, 일부 시스템에서는 SONET/SDH 오버헤드를 사용하지 않고 비트를 활용할 수 있는 BCH 코딩 방식을 고려하고 있으며, 또한 높은 이득을 얻기 위해 여러 가지 코딩 방식을 concatenation 시키는 방법도 연구되고 있다.

그림 3 OSNR 마진 확보에 따른 효과

광선호를 광충돌 매개체로 사용하는 distributed 랜던 증폭기에 대한 연구가 진행 중이다. 특히 넓은 대역에 걸쳐 정밀한 높은 이득을 갖는 랜던 증폭기 구현하기 위해서는 고출력 둔화관의 선택, 광충돌 매개체 선택, 품질 향상 등이 중요하다. 랜던 이득은 근본적으로 비선형 현상으로 광충돌 매개체의 광충돌 유한 면역이 작용하므로 전송속도의 증가가 이루어지지 않는 한, 원래 신호의 정확한 정보를 갖고 동일한 방향으로 진행하는 이중 레이러 전송 속도의 크기

그림 4 FEC를 이용한 성능수정

2.4 분산관리(Dispersion management) 방법

세분산은 광산호를 전송하는 광선호의 파장에 따른 전파속도가 달라져 필스 파장이 유발되는 현상이다. 셀 필드는 전송량의 복구를 차로 인해 광선호의 전

세분산은 그 과정에서 분산에 대해 시스템이
가는 여유는 chirp이 없는 송신기를 사용할 경우 2.5G의 경우 16,000ps/nm, 10G의 경우 10,000ps/nm, 40G의 경우는 60ps/nm로 극히 감소하고므로 전송시 반드시 색분산에 대한 보상이 필요하다. 훈련 사용되는 분산보상광섬유는 여러 파장에서 동시에 보상할 수 있는 장점이 있지만, 광선로가 갖는 분산기울기를 정확히 보상하지 못함으로 수신~수액 채널이 여러 단의 DCF를 거칠 경우 최종 수신단에서 채널별로 갖는 분산값이 달라지므로 방향 정확게 설계하기 위해서는 분산기술기에 대한 보상도 필요하다.

그림 5 전송속도별 색분산과 광선모드 분산

광선모드분산과 달리 차널 당 속도가 증가한 경우 색분산에 의한 영향을 줄이기 위해 단순히 광섬유의 분산값을 매우 낮게 가져가는 것은 어렵다. 왜냐하면, 라만 중복기를 사용하지 않을 경우 전송속도가 증가함에 따라 광수신기는 더욱 높은 OSNR을 요구하고 그에 따라 광선로에 입력되는 광선을 보다 깊이하게 되므로 광선로가 갖는 분산값이 작으면 비례적으로 링크에 의한 전송성능 저하가 나타날 수 있기 때문이다. 따라서, 초고속 대용량 전송을 하기 위해 광선로는 적절한 분산값을 가져야 하고 그에 따른 분산보상과 분산기울기 보상, 즉 분산관리가 반드시 필요하게 된다.

분산관리 기법의 기본 원리는 비선형에 의한 신호 확장을 줄이기 위해 스펙트럼의 루돌프 분산은 크게 하고, 전송용의 총 분산값은 줄여 분산에 의한 페널티를 감소시키는 것이다. 훈련 사용되는 방법으로는 광선로의 분산의 반대의 분산값을 갖는 분산보상광섬유를 추가로 사용하는 방법과, 광선로 자체로 용이 다른 절단과 반대의 분산값을 갖는 광섬유를 사용하여 하이브리드 형으로 만드는 방법이 있다. 전자의 경우 분산기울기 보상이 필요하고, 후자의 경우 많이 제구성되거나 보호 채널이 시스템이 분산에 의한 중복한 마진을 가져야 되므로 기포실된 광선로에서는 사용하기 어려운 단점이 있지만 라만 중폭효율을 높일 수 있는 장점을 갖기 있다.

그림 6 분산관리 방법

초고속 대용량 WDM 장치가 설치된 선행의 일부 구간이 무해어진다는 새로운 광케이블로 대체될 경우, OXC의 도입으로 광선단위 회전분배나 절체가 이루어지면 2002 한국정보통신학회 하계학술대회 논문집 2002. 8. 30-31

광경로가 유동적으로 변할 경우, 채널 속도가 40Gbit/s 이상으로 고속화되어 온도에 따른 광섬유의 미세한 분산 값 변화가 시스템의 허용 분산값에 영향을 주는 경우, 채널 단위의 분산관리가 필요하며 이를 위해서는 가변 분산보상법이 필요하다.

3. 결 론

본 논문에서는 WDM 기반 초고속 대용량 광전송망 구축에 필요한 광전송 기술인 첨조포트, 라만 중폭, FEC, 분산관리기술 통합을 살펴보았다. 이러한 기술을 이용한 수 십 테라바이트의 전송이 실현될 수준에서는 이미 가능하지만, 직접 기간망을 구축하는데 적용하기에는 시기적으로 이르다는 것에 대한 제재가 있다. 그러므로, 통신 사업자 측면에서는 초고속 대용량 광전송망 기술에 대한 충분한 이해를 갖고 사업계획 영역에 따른 경제성을 파악하고 사용자 요구사항을 정립하는 것이 바람직하다.

참고 문헌