Proceedings of the Korean Statistical Society Conference (한국통계학회:학술대회논문집)
- 2002.05a
- /
- Pages.91-97
- /
- 2002
Analysis of Gene-Drug Interactions Using Bayesian Networks
베이지안망을 이용한 유전자와 약물 간 관계 분석
- O, Seok-Jun ;
- Hwang, Gyu-Baek ;
- Jang, Jeong-Ho ;
- Jang, Byeong-Tak (서울대학교 바이오정보기술연구센터, 서울대학교 컴퓨터공학부)
- Published : 2002.05.24
Abstract
최근의 생물학 연구를 위한 기기의 자동화 및 고속화는 생물학 관련 정보량의 급증을 가져오고 있다. 예를 들어, DNA chip에서 얻어지는 마이크로어레이(microarray)는 수천 종류의 유전자의 발현량을 동시에 측정한다. 이러한 기술들은 생물의 세포나 조직에서 일어나는 일련의 다양한 현상을 전체적으로 조망하는 관점에서 관찰할 수 있는 기회를 제공하고 있으며, 이를 통한 생명공학의 전반적인 발전이 기대되고 있다. 따라서 대량의 생물학 관련 정보의 분석이나 데이터 마이닝이 행해지고 있으며 이를 위한 대표적인 기법들로는 각종 클러스터링(clustering) 및 신경망 계열의 모델 등이 있다. 본 논문에서는 확률그래프모델의 하나인 베이지안망(Bayesian network)을 생물정보분석에 이용한다. 구체적으로 유전자 발현패턴과 약물의 활성패턴 및 암 종류 사이의 확률적 관계를 모델링한다. 이러한 모델은 NCI60 dataset(http://discover.nci.nih.gov)에서 베이지안망을 학습함으로써 구성된다. 분석의 대상이 되는 데이터가 sparse하기 때문에 발생하는 어려움들을 해결하기 위한 기법들이 제시되며 학습된 모델에 대한 검증은 이미 생물학적으로 확인되어 있는 사실과의 비교를 통해 이루어진다. 학습된 베이지안망 모델은 각각의 유전자 간, 혹은 유전자와 처리된 약물 간의 실제 생물학적 관계를 다수 표현하며, 이는 제시되는 방법이 생물학적으로 유의미한 가설을 데이터 분석을 통해 효율적으로 생성하는데 유용하게 활용될 수 있음을 보인다.
Keywords