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Porous Medium Theory in Consolidation
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1. Introduction

Porous materials such as soils consist of a solid
skeleton and voids or porosity which can contains
various fluid and air. When loads are applied to the
porous medium, there is an interaction between the
deformation of the soil skeleton and fluid flow. Although
the special cases of no-flow (undrained) and free-flow
(drained) responses of porous media can be analyzed by
single phase continuum formulations, it is generally
essential to use two phase formulations to describe the
effective stresses and pore-fluid pressures for a saturated
porous material. Such theories were first developed by
Terzaghi(1943) and Biot(1955) for linear elastic and linear
visco-elastic porous materials. Some applications of the
finite element method to the theory of elasto-plastic
mixtures have been reported. Among them, Prevost
(1980, 1982) (1986)  developed the
velocity(pressure)-displacement  formulation of  fluid
While both formulations have

their own advantages, a porous medium treatment with a

and  Borja

saturated soil mixtures.

velocity formulation is utilized in this work since it leads
to homogeneous systems of finite element equations. The
intent of this work is that introduction of such porous
theory and the application into consolidation to account
for a coupled pore-pressure and effective stress. In the
following, the basic theory, as well as a numerical
and its consolidation

implementation examples are

presented.
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2. Theory of Porous Medium

2.1 Field equations
The treatment of soils to be employed here is that of

a porous, granular solid skeletal continuum interacting
with a pore fluid. For and
completeness of the consolidation analysis framework, the

continuous clarity
basic mass and momentum balance equations for both
fluid and solid phases of the soil are briefly developed
below. A more extensive development of these equations
can be found in Provest(1980). In the following, the
average intrinsic micro densities of both the fluid and

solid phases are denoted by p, , where o= w denotes

the fluid phase and @=s are the solid phase. In a

representative volume element of soil, the respective
volume fractions of the fluid and solid grain phases are
denoted by #* and #»° Accordingly, macroscopic mass
densities of the fluid and solid phases are denoted by
e¥ and p°, and are related to the intrinsic average

micro densities as follows

p¥=n"p, 0 =n'p; @

For the case of fully saturated soils, the macroscopic or

bulk mass density p of the medium thus can be

expressed as
o=0"+p"=n'p,+ n"p" =1 @

The continuum mechanics sign convention is used in
this work and so stresses and strains are positive in
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tension and negative in compression. Fluid pressures,
however, are taken as positive in compression. With this
the balance of linear momentum
fluid and

expressed in general form as

sign convention,

equations for the solid phases can be

vV o'+ 3= p"a®—b) (3)

th

where  3° is a momentum supply to the a

constituent from the rest of the mixture due to

interaction effects, and b is a body force per unit mass.
Momentum transfer between the solid skeleton and the
pore fluid is assumed to consist of diffusive and

dilatational contributions as follows

A8 ~w

p==p ==& (=)~ p,vn" 4)

where £ is the soils’ resistivity tensor which is merely

the inverse of its symmetric, positive definite
permeability tensor. In the general momentum balance
equations (4), the partial stress tensor ¢“ for the pore

fluid is simply
6" =n"0,=—n"p,l ©)

where p,, represents an average pore fluid pressure on

the microscale, and 1 is the identity tensor. In a similar

fashion, the mathematical expression for the partial

stress tensor of the solid phase ¢° is
S — nso_s (6)

where ¢, represents an average solid stress state in the

soil on the microscale. The partial solid stress ¢° is not
to be confused with Terzaghi's effective stress ¢
(Terzaghi, 1943), soil's  the
relationship between the two is straightforward. For

although for most

example, the total average stress on a planar segment

passing through a sequence of vanishingly small
grain-to-grain contact areas can be written as
o=c+0"=d —p,l | )

Figure 1 shows the total and effective stresses in the
porous media.
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Fig. 1 Total and effective stresses in porous medium

When these notations mentioned above are employed

in equation (3), and convective inertial term are
neglected and under quasi-static conditions then specific
linear momentum equations for both the skeleton and

the pore fluid reduced to
V(o' —n'p )~ & (V= 0v")+0°b=0 )
—v(#¥p)+E (= v+ p%b=0 ©9)

2.2 Continuum formulation

In the following, the response of soils subjected to
the loading will be treated as general materially
nonlinear parabolic initial boundary value problems in
which the governing field equations are those provided
in (8) and (9). With seepage and pore pressure effects
included in these field equations, the analysis problems
to be feature

dependence. Therefore, the strong form of the boundary

solved will physically based time

value problems are as follows:

Find the soil displacement #° and the pore fluid

velocity ¢ over the continuum soil domain £ such
that local equilibrium conditions (8) and (9) are satisfied
throughout the soil mass subjected to the boundary

conditions

v'= 2" on r, (10
v’= 9" on I, (11)
n-(c’—n'pl)=h on I, 12)
—n“pn= h" on [ (13)
and the initial conditions are

u'(%,0) = uy(x) (14)
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v*(x,0) = vy(x) (15)
v(x,0) = vy (%) (16)

Part of the surface I, denoted by I o and [’ g are

subjected to a prescribed displacement boundary

conditions g, while the remainder of the surface I’ e
and [',. are subjected to tractions . In equation (8),

o represents the effective stress which is dependent
upon the soil skeleton’s constitutive properties and

deformation history, succinctly expressed here as
o=o0(e, &) 17)

in which &= v°% denotes the skeletal small strain
tensor and { represents a vector of internal state
variables.

In soil mechanics, the pore fluid is often essentially
lead to
appreciable changes in density and because the fluid is

incompressible since applied loads do not
typically much less compressible than the soil skeleton.

In such cases, the continuity equation imposes an
excessive constraint, which causes mesh locking. In
order to avoid such problems, special technique such as

reduced and selective integration(Malkus and Hughes,
1978) and B method(Hughes, 1980) have been used

incorporating the constraint into the constitutive
equation. The rate type constitutive equation for the

pressure is given by

ﬁZ—%{nS(V V) +r*(v - 0™} (18)

2.3 Finite element formulation
Usage of a Galerkin weighted residual formulation in
which the real

expanded in terms of the same nodal basis functions,

and variational kinematic fields are

and discretization of the time domain into a finite

number of discrete time points, leads to the following

force balance equations at each unrestrained node A in

the mesh of the soil domain as here at the (n+1)"
time step:

(ra) n+1:(ffq) w1~ ) ne1=0 19
w h e r e

fB.z( o — nspwl) n+1 dQs

(fA) ntl”
- fBZl‘(nwpw]-) nt+1 dQs
— [ N4 & (=" 0 do,
[Na & =0 0y do, | @O
(F%) pi1= fNA 0’ b, dR, fNAil w+1@l (21)
JNa 0¥ b,0r a2 [NaRYal
where B, represents the nodal strain displacement

matrix and N, denotes the shape function for the

At quantity

internal forces (both solid and fluid) on node A at time

node. The () .+1 Tepresents the

t.., due to stresses in the soil mass, and (f%) ,4;
A at

time f,,, due to body force and traction type loads.

represents the external forces applied to node

balance can be achieved between the
then the

As long as

internal soil stresses and external forces,
solutions to equation (19) will exist.
In general equation (11) represents a set of nonlinear

algebraic equations which must be solved in an iterative

fashion for the nodal velocities v ,; at each time step.

To obtain updated nodal displacements #,,;, a

generalized mid-point rule algorithm is used as
Ui 1= Uyt (1= 22D, 0, KD 4] Vs (22)

where y=[0,1] is a constant integration parameter
whose value is chosen as unity in the computations
presented herein, while and denote,

U p+1 Uyt

respectively, the displacement and velocity fields at time

z-n-f»l

3. Consolidation Problems

The following examples demonstrated the accuracy of
the foregoing numerical procedures which have been
element The
were used with four nodes

implemented in finite code. same

quadrilateral elements
interpolating the displacements field for both solid and

fluid. Standard Guassian quadrature rules were employed
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in the numerical integration, ie, 2X2 rule on the element

stiffness. For the fluid phase reduced quadrature was

used using a B procedure.

3.1 One-dimensional elastic consolidation

When the soil mass is subjected to a stress increase,
the pore water pressure is suddenly increased. The
excess pore water pressure generated due to loading
gradually dissipates over a long period of time (that is,
the consolidation). In order to simulate one-dimensional
load

p=1000N/m* over the entire top surface was applied

consolidation ~ behavior, an uniform stripe

at time =), then held constant. Figure 2-a) shows the
problem -description for one-dimensional porous medium
of elastic sufface. The total initial height H=8m and
two columns of 16 elements are used. Each element has

a side length  of lm;  Young's  modulus

E=1.0x% 1()7N/ m’; Poisson’s ratio y=0.0; coefficient
c,=1.0m?/s; the

of consolidation solid density

0°=2.0x10%kg/ m>; the fluid density
0“=1.0x10%kg/m’; permeability £=9.81x10 ~‘m/s;
porosity n”=0.3; bulk modulus of fluid

A=2.0x10°N/m?. The same quadrilateral element

were used with four nodes interpolating the

displacements field for both solid and fluid. Standard

Gaussian quadrature rules were employed in the
numerical integration. For the fluid phase reduced
quadrature was used using a B procedure.
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(a) Geometry (b) Pore water pressure

Fig. 2 One-dimensional consolidation geometry and pore
pressure at depth 1.5m beneath the load

The analytical solution for pore water pressure is
available for this problem (Das, 1994). A plot of u
versus t is shown in Figure 2-b). Excellent agreement
between the numerical and analytical results can be

observed.

3.2 Two-dimensional elastic consolidation
Figure 3-a) shows the problem description for
The

initial height and width of the half surface are 8m and

consolidation of an infinite elastic half surface.

12m, respectively. The model was meshed with 96
elements. An uniform stripe load of with 2B with
uniform intensity p, = 1000N/m* was applied on the
top surface at time ¢=( causing an initial fluid
(i.e, p,(0)=0.712P) (Chen, 1966)

thereafter held constant with drainage occurring at top

pressure and
surface. The same material propertied used in one
dimensional problem are also employed in this problem.
Figure 3-b) shows the deformed shapes of the soil mass.

A plot of p, versus fis shown in Figure 4.
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Fig. 3 Two demensional consolidation problem
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Fig. 4 Porewater pressure at depth z=1.5m beneath the
applied strip load
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5. Summary

In the consolidation analysis presented, the porous
medium theory was introduced on a partially saturated
soil deposit. It was found that the coupling between the
soil skeletons’ shear and compressibility behaviors are
very important factors. On the demonstrated example,
one and two dimensional consolidation example was

demonstrated.

References

Biot, M. A. (1955), "Theory of Elasticity and
Consolidation for a Porous Anisotropic Solid",
J. Appl. Phys., 26, pp. 182-185

Borja, R. I (1986), "Finite element formulation for
transient pore pressure dissipation: A variational
approach”, Int. J. Solids Struc. 22, pp. 1201-1211

Chen, A. T. F. (1966) "Plane strain and axi-symmetric
primary consolidation of saturated clay", Ph. D.
thesis, Rensslaer Polytechnic Institute, Troy, New
York

Das, B. M. (1994), Principles of geotechnical engineering
3rd ed. Boton PWS Publishing Company

Hughes, T. J. R. (1980), "Generalization of selective
integration procedures to anisotropic and nonlinear
media", Int. J. Numer. Meth. Engng. 15 pp. 1413-1418

Malkus, D. S. and Hughes, T. J. R. (1978), "Mixed finite
elements-reduced and selective integration techniques:
a unification of concepts”, Comput. Mech. Appl.
Mech. Engng. 15, pp. 63-81

Prevost, J. H. (1980), "Mechanics of continuous porous
media", Internat. J. Engrg. Sci. 18, pp. 787-800

Prevost J. H. (1982), "Non-linear transient phenomena in
saturated porous media", Comp. Methods Appl.
Mech. Mech. Eng., 20, pp. 3-18

Terzaghi, K. (1943), "Theoretical Soil Mechanics", John
Wiley and Sons, New York

—112—



