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Free Vibration Analysis of Horizontally Sinusoidal Curved Beams
in Cartesian Coordinates
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ABSTRACT

The differential equations governing free vibrations of the elastic, horizontally curved beams with
unsymmetric axis are derived in Cartesian coordinates rather than in polar coordinates, in which the effect of
torsional inertia is included. Frequencies are computed numerically for the sinusoidal curved beams with both
clamped ends and both hinged ends. Comparisons of natural frequencies between this study and SAP 2000 are
made to validate theories and numerical methods developed herein. The convergent efficiency is highly
improved under the newly derived differential equations in Cartesian coordinates. The lowest four natural
frequency parameters are reported, with and without torsional inertia, as functions of three non-dimensional
system parameters: the horizontal rise to chord length ratio, the span length to chord length ratio, and the

slenderness ratio.

Keywords: Cartesian coordinates, free vibration, harmonic motion, sinusoidal curved beam, mode shape,
natural frequency, torsional inertia, unsymmetric axis.

1. Introduction

Studies on the free vibrations of linearly elastic
horizontally curved beams of various shapes have
been reported for more than three decades. Studies
concerning with this subject was critically reviewed
by Lee et al.". Briefly, such works included studies
of circular curved beams with predictions of the
lowest frequency by Volterra and Morell?,
Romanelli and Laura®, and Maurizi et al.”; studies
of non-circular curved beams with predictions of
higher frequencies by Irie et al.”, Kawakami et al.?,
Kang et al.”, Yildirim® and Lee et al.”; and studies
showing the effect of rotatory inertia on free
vibration frequencies by Laskey'” and Mo'".

This paper has three main purposes: (1) to
present the differential equations for free vibrations
of horizontally curved beams where all equations
are derived in the Cartesian coordinates rather than
in polar coordinates; (2) to include the torsional

inertia in the differential equations; and (3) to
illustrate the numerical solutions to the newly
derived equations for a broad class of sinusoidal
curved beams.

In most previous works on curved beam
vibrations, the polar coordinates were employed
and the effect of torsional inertia was excluded in
the differential equations. The results presented
herein extent significantly previous works. That is,
using the Cartesian formulation together with
highly efficient and convergent numerical methods,
the free vibration frequencies, with and without
torsional inertia, are investigated for sinusoidal
curved beams with unsymmetric axis. Such
numerical results are presented for both clamped
ends and both hinged ends. The lowest four
non-dimensional frequency parameters are shown
as functions of three system parameters: the
horizontal rise to chord length ratio, the span length
to chord length ratio, and the slenderness ratio.
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The following assumptions are inherent in this
theory: the curved beam is linearly elastic and the
small deflection theory is governed. In addition, the
curved beam is assumed to be in harmonic motion.

2. Mathematical Model

The geometry and nomenclature of . the
horizontally curved beam with unsymmetric axis,
placed in Cartesian coordinates (x, y,v), are shown
in Fig. 1. The curved beam is supported by both
clamped ends or both hinged ends. The geometric
variables are defined as follows.

L: Span length

1 : Chord length

h: Horizontal rise

v Vertical displacement

v : Rotation of cross-section

¢ : Torsional angle of beam axis
p : Radius of curvature

8 : Inclination of p withx -axis

---------
—~——
e
-,

hinged/
clamped

Fig. 1 Geometry of curved beam

The shape of sinusoidal curved beam, which is
chosen as the object beam herein, is expressed in
terms of (/,h) and the coordinate xin the range

from x=0 to x=L.Thatis,
y=hsin(mx/l), 0<x<L 43

A small element of the horizontally curved
beam is shown in Fig. 2 in which are defined the
positive directions for the shear force (J, the

bending moment A , the torsional moment 7 , the
vertical inertia force F, and the torsional inertia

torque C,. Treating ¥, and C, as equivalent
static quantities, the three equations for “dynamic

equilibrium” of the element are

Q'~ pF, =0 @
M'~pQ+T =0 €)]
M-T'+pC, =0 @)

where (') is the operator d/dé.

Fig. 2 Stress resultants and inertia forces

The equations that relate M and T to the
rotation y and the torsional angle ¢ are')

M =EIp™ (¢-y") &)
T=Glp ' (¢'~w) (6)

where EI and GJ are flexural rigidity and
torsional rigidity, respectively.

The horizontally curved beam is assumed to be
in harmonic motion, or each coordinate is
proportional to sin{w;) where @; is the ith
circular frequency and ¢ is time. The inertia forces
per unit arc length are then

F,=—yAw’v N
Cy=-Egl,0'¢ @)

where y is the mass density, A is the cross-

sectional area, [ p I8 the polar moment of inertia
of the cross-section, and the index E, in Eq. (8)is

defined as follows.

9.1)
9.2)

E, =1, if C, isincluded.
E,=0, if C, is excluded.

When Eqgs. (5) and (6) are differentiated once,
the results are
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M'=Elp™'((¢'-v")-p ' p'($-y")]
T'=GJp ' [(w'+¢") - p ' p'(w + ¢")]

(10)
an

When Egs. (6) and (10) are substituted into Eq.
(3), then

Q=EIp*[(¢'—v")-p ' p'(¢-v")]

(12)
+GJp (¢ +w)

The following equation is
differentiating Eq. (12).

obtained by

Q' =Elp”[(¢"-y™) =-3p"' p'(¢'—y")
-p7p" G-y +3p P (B-v)
+ GJp 2 [(¢"+y) -2p7' p'(¢" +¥)]

(13)

From Fig. 1, it is seen that the inclination 8 is
related to the coordinate x as follows.

0 =m/2—tan""(dy/ dx) (14)
=7/2 —tan"'[(zwh /) cos(mx /D]

When Eq. (14) is differentiated, the result is

d6 =xhsin(mx/ D{I* + 72h* cos® (me/ D] dx  (15)

Define the following beam parameters.

g, =[7n2h7'1* + heos® (mx/ D]esc(me /1) (16.1)

dg,
=_°1 16.2
82 dx ( )
dzg
g = dle (16.3)

From Eq. (15), and with Eqgs. (16.1) - (16.3), the
following differential operators are obtained.

d d

4 _, 4 17
20 gldx 17)
d? d? d
roz=glzﬁ+g182; (18)
& s a0

ag> "' % e’ (19)

d
+(g,°g3 +g1g22)5

The radius of curvature p at any point of the

sinusoidal curved beam is expressed as Eq. (20).
Also, its derivatives p' and p" can be expressed

in terms of x by using Eq. (20) with Eqgs. (17) and
(18) as Egs. (21) and (22), respectively. That is,

p=[1+(dy/dx)’"*(d?y/dx?)"

(20)

={7272h71? + heos? (e / ' ? csc(me /1)

dp dp
= E g E 21
P 40 gll (21)

d’p _ ,d’p dp
T A St S £ 22
rroil g L Eh (22)

The following non-dimensional parameters are
introduced.

s, =11\JI,/4
e=GJIED

(23)
24

Here s, and & are the slendemess ratio about
I, and the stiffness parameter, respectively.

When Egs. (7), (13), and (20)-(22) together with
Egs. (17)-(19) and (23) and (24) are used in Eq. (2),
the result is Eq. (25). And when Egs. (5), (8), (11)
and (20)-(22) together with Egs. (17)-(19) and (23)
and (24) are used in Eq. (4), the result is Eq. (26).
That is,

i —quivay +aw+a,0" +ad

y" =ay 2:/’ W Ha g +asg (25)
+agp+m; a8

9" = agy’ +agy +ayg’ +(an +Egoap)p  (26)

Finally the relationship between the vertical
displacement v and the rotation of cross-section
v 1is expressed as dv/ds=dv/(pdf)=Vv'/p=y
where ds is the arc length of small element in Fig.

2, and then this relation can be converted by using
Egs. (17) And (20) as

Vi=a,wp 27)

In these latter three equations (‘) is the operator
d /dx , and the constants are as follows.

a = -8, (g, +3b) (28.1)
a,= gl—z(é_ — &8 _322 -3g,b,-b, _3b12) (28.2)
(28.3)
(28.4)

a, =2¢ g1_3bl

a, =(&+ 1)81_l
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as =gl_2(82 +£8, +5b) (28.5)
as = 8, (3b% +b,) (28.6)
a; = p’g,” (A EI) (28.7)
ag =+’ )gl—1 (28.8)
ay =g, "by (28.9)
Qo = ‘81_1(82 -b) (28.10)
a, =¢"'g” (28.11)
ay =-p*g, e s, 212 (4] EI) (28.12)
ay=pg (28.13)
where,
by=-p'p' (29.1)
b, =-p'p" (29.2)

Now consider the boundary conditions. At a
clamped end (x=0 or x=L), the boundary
conditions are v=y =¢=0 and these relations

can be expressed in the non-dimensional form as

v=0 at x=0 or x=1 (30)
w=0 at x=0 or x=L 31
¢=0 at x=0 or x=1L (32)

At a hinged end (x=0 or x=L ), the
boundary conditions are v=M =¢ =0 and these

relations can be expressed in the non-dimensional
form as

v=0 at x=0 or x=1L (33)
w' =0 at x=0 or x=1 (34)
¢=0 at x=0 or x=1L (35)

Here, the Eq. (34) implies that the bending moment
M expressed in Eq. (5) is zero.

3. Numerical Methods and Discussion

Based on the above analysis, a general
FORTRAN computer program was written to
calculate the frequency parameters @; and the
corresponding mode shapes y =y,(x), §= ¢;(x)
and v =v,(x) . The numerical methods described by
Lee et al.” and Lee and Wilson” were used to solve
the differential Egs. (25), (26) and (27), subjected to
the end constraint Egs. (30)-(32) or Egs. (33)-(35).
First, the Determinant Search method combined

with the Regula-Falsi method was used to obtain
the frequency parameter ®;, and then the

Runge-Kutta method was used to calculate the
mode shapes ¥, ¢ and v.

Prior to execute the numerical studies, the
convergence analysis, for which f(=h/l)=0.2,

e(=L/1)=07, s, =50, £=0.25 and E; =1, was
conducted to determine the appropriate step size
A¢ in the Runge-Kutta method, in which & is
defined as x/I. Figure 3 shows 1/A¢ versus

¢;(= w*\JyA/ EI') curves, in which a step size of
1/A¢ = 20 is found to give convergence for ¢; to

within three significant figures. It is noted that the
convergent efficiency herein is highly promoted,
under same convergence criteria, comparing the
1/A& =50 obtained in polar coordinates by Mo'".

However, the step size of A£=1/50 was used

herein in order to increase accuracy of numerical
solutions.

350
L f<0.2, e=0.7, 5,=50, £=0.25, Ey=1
300 - : clamped-clamped
| ---e--- : hinged-hinged
250 | i=1, 2, 3, 4 : from bottom to top
ZOOL- 8 ~8— 58—
G‘ -
150 F A---fx---eee- F Bonnmas
B A
100 + B—B—8—8
| A - IR
50
G—8——8—8—
P i A o o P, PRI
0 20 40 60 80 100
1/n¢

Fig. 3 Convergence analysis

Four lowest values of ¢;(i=1,2,3,4) and the
corresponding mode shapes were calculated in this
study. Numerical results, given in Table 1, Table 2
and Figs. 4 through 6, are now discussed.

The first series of numerical results are shown
in Table 1. These studies served as an approximate
check on the analysis presented herein. For
comparative purposes, finite element solutions
based on the commercial packages SAP 2000 were
used to compute the first four frequency parameters
¢; for two end constraints. The results showed that
100 three-dimensional finite frame elements were
necessary to match within a tolerance of about 3%
values of ¢; computed by solving the governing
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differential equations. It can be concluded that the
present study gives accurate results.

Table 1 Comparisons of ¢; between this study

and SAP 2000
Geometry i Frq. parameter, C; Ratio*
This study | SAP 2000

Both clamped ends, | 1 36.04 36.25 0.994
=02, e=07, 2 101.5 102.4 0.991
s, =50,£=1025, 3 1235 127.6 0.968
E;=1 4 | 2013 201.7 0.998
Both hinged ends, 1 12.74 12.93 0.985
f=02, e=07, 2 | 62.83 63.67 0.987
s, =50,£=025, 3 123.2 124.6 0.989
E, =1 4 146,2 149.1 0.980

* Ratio=(This study)/(SAP 2000)

All of numerical results that follow are based on
the analysis reported herein. In Table 2, the effects

of torsional inertia on natural frequencies are shown.

It is apparent that the effect of torsional inertia is to
always depress the natural frequencies, in which
these depressions are less than about 1 %. Further,
the frequencies of both clamped ends are always
greater than those of both hinged ends, other
parameters remaining the same.

Table 2 The effect of torsional inertia on frequency

.| Frq. parameter, c; X
Geometry 1 Ratio*
E4=0 | E,=1

Both clamped ends, | 1 25.75 25.68 0.997
f=03,e=075 |2| 7402 | 73.69 | 0.996
5,=80,6=025 |3 15Q,7 149.9 0.995
4] 203.0 201.7 0.994

Both hinged ends, 1 7.23 7.16 0.990
f=03,e=075 |2 4393 4375 | 0.996
5,=80,6=025 |3 107.8 107.1 0.994
4 197.8 196.1 0.991

* Ratio=(E, = 1)/(E, = 0)

It is shown in Fig. 4, for which e=0.75,
5,=50,£=025 and E; =1, thateach frequency
curve of third modes of both clamped ends and both

hinged ends reaches a peak as the horizontal rise to
chord length ratio f 1is increased while the other

frequency parameters decrease as f is increased.

Further, it is observed for these unsymmetric curved
beam configurations that two mode shapes can exist

at a single frequency, a phenomena that was
previously observed only for symmetric vertically
curved beam i.e. arch configurations'®. For both
clamped ends, the second and third modes have the
same frequencies ¢, =c; =1058 at f=0.061

(marked as ). However, the frequency curves of
second and third modes for both hinged ends come
close each other but not cross.

300 — T T

L €=0.75, 5,=50, £=0.25, Es=1 |
| : clamped-clamped
250F : hinged-hinged
Fi=1, 2, 3, 4: from bottom to top 1

200

150

C

100

50

Fig. 4 ¢; versus f curves

It is shown in Fig. 5, for which f =02,
5,=50, £=0.25 and E, =1, that the frequency

parameters ¢; decrease as the span length to chord

length ratio e is increased. Particularly, it is noted
that the frequency parameters of third and fourth
mode are more significantly decreased as e gets
smaller values.

300 — T T T T T T T 7 1
J=0.2, 5,=50, £=0.25, E4=1
: clamped-clamped
400 B\ -------- : hinged-hinged

i=1, 2, 3, 4 : from bottom to top

300 |-

200

/I AT ST I BT AT ST A DU RS E A B AT

100

0.3 0.5 0.7 0.9 1.1 1.3 1.5
e

Fig. 5 ¢; versus e curves
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It is shown in Fig. 6, for which f =02,
e=0.75, £=0.25 and E; =1, that the frequency
parameters ¢; increase, and in most cases
approach a horizontal asymptote, as the slenderess
ratio s, is increased. It is noted that two pairs of

lines cross, which shows that two mode shapes may
exist at the same frequency as already shown in Fig.
4. That is, two modes of second and third modes for
both clamped ends may exist where ¢, =c¢; =34.7

at s, =92 (marked as H).

14

250!l'||-l|fr1||f1
" f=0.2, e=0.75, £=6.25, Ey=1

r : clamped-clamped
200 b : hinged-hinged

; i=1, 2, 3, 4 : from bottom to to

150 |

<

100 F

s0 -

PR T S N VN TS SO WO S

60 80

100

Fig. 6 c; versus s, curves

4. Concluding Remarks

This study deals with the free vibrations of the
horizontally curved beams with unsymmetric axis.
The governing differential equations are derived in
Cartesian coordinates rather than in polar
coordinates, in which the effect of torsional inertia
on the natural frequencies is included. Differential
equations, subjected to the sinusoidal curved beams,
newly derived herein were solved numerically to
calculate both natural frequencies and mode shapes.
For validating the theories and numerical methods
presented herein, frequency parameters obtained in
this study are compared to those of SAP 2000. The
convergence efficiency of the numerical methods
developed herein is highly improved under the
differential equations in Cartesian coordinates. As
the numerical results, the relationships between the
frequency parameters and the various non-
dimensional beam parameters are reported, and
typical mode shapes are presented. It is expected
that rtesults obtained herein can be practically
utilized in the fields of vibration controls.

References

. Lee, BK., Oh, SJ. and Park. KK., “Free

vibrations of shear deformable circular curved
beams resting on elastic foundation,”
International Journal of Structural Stability and
Dynamics, Vol. 2, No. 1, 2002, pp.77-97.

2. Volterra, E. and Morell, J.D., “A note on the

10.

11.

_16_.

lowest natural frequency of elastic arcs,”
Journal of Applied Mechanics, Vol. 27, 1960,
pp.744-746.

. Romanelli, E. and Laura, P.A.A., “Fundamental

frequency of non-circular, elastic, hinged arcs,”
Journal of Sound and Vibration, Vol. 24, No. 1,
1972, pp-17-22.

. Maurizi, M.J., Rossi, R.E. and Belles, PM.,,

“Lowest natural frequency of clamped circular
arcs of linearly tapered width,” Journal of
Sound and Vibration, Vol. 144, No. 3, 1991,
pp.357-361.

. Irie, T., Yamada G. and Tanaka, K., “Natural

frequencies of out-of-plane vibration of arcs,”
Journal of Applied Mechanics, ASME, Vol. 49,
1982, pp.910-9137.

. Kawakami, M., Sakiyama, T., Matsuda, H. and

Morita, C., “In-plane and out-of-plane free
vibrations of curved beams with variable

sections,” Journal of Sound and Vibration, Vol.
187, No. 3, 1995, pp.381-401.

. Kang, K, Bert, C.W. and Striz, A.G., “Vibration

analyses of horizontally curved beams with
warping using DQM.” Journal of Structural
Engineering, ASCE, Vol. 122, No. 6, 1986,
pp.657-662.

. Yildinim, V., “A computer program for the free

vibration analysis of elastic arcs,” Computers
& Structures, Vol. 62, No. 3, 1997, pp.475-
485.

. Lee, B.X. and Wilson, J.F., “Free vibrations of

arches with variable curvature,” Journal of
Sound and Vibration, Vol.136, No. 1, 1989,
pp.75-89.

Laskey, A.J,, Out-of-plane vibrations of
continuous circular curved beams considering
shear deformation and rotatory inertia. M.S.
Thesis, The University of New Hampshire,
USA,, 1981.

Mo, JM., A study on free vibrations of
horizontally curved beams with variable
curvature. Ph.D. Thesis, Wonkwang University,
Korea, 1997.



