C2 ## Localization of Divalent Cation-Binding Site in the Pore of a Small Conductance Ca^{2+} -activated K^{+} Channel and Its Role in Determining Current-Voltage Relationship Heun Soh*, Na-Rae Shin and Chul-Seung Park Department of Life Science, Kwangju Institute of Science and Technology (KJIST) Gwangju, 500-712 Korea In our previous study (Soh and Park, 2001), we proposed that the inwardly rectifying current-voltage (I-V) relationship of small-conductance Ca²⁺-activated K⁺ channels (SK_{Ca} channels) is the result of voltage-dependent blockade of K⁺ currents by intracellular divalent cations. We expressed a cloned SK_{Ca} channel, rSK2, in Xenopus oocytes and further characterized the nature of the divalent cation-binding site by electrophysiological means. Using site-directed substitution of hydrophilic residues in K⁺-conducting pathway and subsequent functional analysis of mutations, we identified an amino acid residue, Ser359, in the poreforming region of rSK2 critical for the strong rectification of the I-V relationship. This residue interacts directly with intracellular divalent cations and determines the ionic selectivity. Therefore, we confirmed our proposition by localizing the divalent cation-binding site within the conduction pathway of the SK_{Ca} channel. Since the Ser residue unique for the subfamily of SK_{Ca} channels is likely to locate closely to the selectivity filter of the channels, it may also contribute to other permeation characteristics of SK_{Ca} channels.