# The Perspective of DAB Data Broadcasting Technology and Services

2002, 5, 24

MBC Technical R&D Center SangWoon, Lee (Isw@mbc.co.kr)

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

MRC Technical R&D Center

# **Contents**

- Gerneral Data Broadcasting Charateristics for DAB
- II. MPEG-4 based DMB
- III. ITS Services and TPEG
- IV. DGPS
- V. R&D of MBC R&D Center for Data Broadcasting
- IV. DAB Receivers
- V. Conclusion

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

2

I. Gerneral Data Broadcasting Charateristics for DAB

The Perspective of DAB Data Broadcasting Technology and Services, May 2002



# **Data Service using Broadcasting System**

- Merits
  - High Transmission Power (\*\*\* $W \sim *Kw$ )
  - Excellent Transmission Site (highest mountain or special tower)
  - No battle-neck and less delay for the transmission
  - No limit for the number of recipients who receive the data simultaneously
- Demerit
  - One way transmission

The Perspective of DAB Data Broadcasting Technology and Services, May 2002



## The Data Service for DAB

- Multimedia Broadcasting (DMB)
- Traffic Information (ITS, TPEG)
- Broadcasting files and streams
- Stock and shares information
- Band and artist information
- The title of the track
- Programme information
- News, Sports headlines (+ scores)
- Contact telephone numbers

The Perspective of DAB Data Broadcasting Technology and Services, May 2002



# The Characteristics of Data Broadcasting for Eureka-147

- provides reliable reception with fixed, portable and mobile receivers
- operates at any frequences up to 3GHz for mobile reception on terrestrial, satellite, hybrid and cable network
- Within 1.5MHz frequency block, 1.824 Mbps available depending on level of protection
- Using SFN the transmission of programs or data over several transmitters, nation wide

6

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

# The Characteristics of Data Broadcasting for Eureka-147

- a wide range of sources, channel coding options, and data services
- incoporates Conditional Access (encrytion and assressing, enabling transmission to secluded groups)
- MOT for multimedia objects in DAB MOT: Multimedia Object Transfer Protocol

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

MBC Technical R&D Center

# **MOT** (Multimedia Object Transfer Protocol)

- supports transporting objects and files
- segments the objects, interleaving on different levels
- links objects in different data streams
- lets the terminal identify different types of objects as JPEG, MPEG or ASCII
- includes otional parameters to support applications
  - : time stamps, creating file name, providing alternative display mode

8

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





# The Protocol Stack for the Eureka-147

- A stream multiplex and Fast Information Channel (FIC) build the DAB stream
- FIC handles multiplex configuration information
- such as the number of available audio or data channels ,the labels indentifying the channels
- descriptions of whether certain channels should link together in the receiver to creat a full service
- also carries service information describing each service

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





### Interactive Channel

- Open loop, Closed loop
- Two Subgroups in Closed loop
- One uses interactive channel for transmission purpose

  ex: Acknodgement or request for resending the information for error
- The other uses the channel for application purposes
  - ex: End users order information to download from the service provider
- Quality of service, number of recipients, system load, security determines whether broadband broadcsting or narrow point-to-point broadcasting
- The interactive channel may have a smaller capacity and be more expensive

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 13



# Other Considerations for Data Broadcasting

- A Specific Capacity
- A Specific coverage area and transmission over a selected area
- A probability of reception
  - the level of protection, segmentation, repetition ration
- Different transmission channels
  - stream mode, packet mode, FIC, PAD, AIC
- Validity time for the information
- Triggering and activation of the service
- Identification of the content format of the object

The Perspective of DAB Data Broadcasting Technology and Services, May 2002



# Other Considerations for Data Broadcasting

- Alternative display mode
- Defining other parameters for the future
  - priority for memory handling or capacity allocation in a receiver
- Time of transmission
- Priority of transmission
- Encrytion
- Conditional Access
- Cyclic Transmission and repetion of data objects

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 15



# II. MPEG-4 based DMB

(Digital Multimedia Broadcasting)

The Perspective of DAB Data Broadcasting Technology and Services, May 2002



# MPEG-4 based DMB (Digital Multimedia Broadcasting)

- Studied and developed by Robert Bosch GmbH
- The elementmentary streams resulting MPEG-4 are wrapped into an MPEG-2 TS
- Main work items are MPEG-4 audio, vedio codec
- which are highly optimised to achieve real-time performance
- Good coding efficiency was essential for the limited bandwidth
- DBM improves the error protection with the additional bolcks
  - : scrambling, RS encoder and convolutional interleaver

The Perspective of DAB Data Broadcasting Technology and Services, May 2002



# **MPEG-4 based DMB Encoder**

- Modularity and expandability
- The processing of audio and video signals is done in two different subsystems
- Eathernet for dual PIII systems
- Universal interface board for the connection of external sources
- Both audio and video signals are synchronized by timestamps
   based on 10MHz external clock reference
- To cope with the real-time processing demands, the OS on both subsystems is SMP-Linux with a real time extension

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





### MPEG-4 based DMB Decoder

- consists of two separate CPUs, connected by eathernet
- The OS is Windos NT for both CPU
- The master CPU reads the transport stream from the RF-module and de-multiplexes the audio and video elementary stream
- The audio stream is decoded in DSP-based decoder board
- The audio stream is transferred to the slave CPU, which decodes video data according to the ACE-profile (pre-processing)
- Master CPU finally presents the decoded video sigal
- additional task of slave CPU is to present of information data

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





# III. ITS Services and DAB

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 23



# Needs for TTI (Traffic and Travel Information)

- Where am I?
- How do I get to where I want to go?
- How can I go without getting caught traffic jamming?

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





The need for Traffic information Service using broadcasting: UK

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

25



# Development of TEPG

- 1997, B/TPEG Project Group in EBU (supported by EC)
- One Message Generation Process Various Delivery Technologies

FM (RDS-TMC, DARC), Mobile Comm.System(GSM, CDMA.

IMT 2000), Internet, DAB, DVB-T

- Wide Range of Receiver could be used for TPEG protocol
- Includes : Broadcasters, Electronics manufacturers, Digital Mapping Companies. Service Providers, Transmission Operators

RTM (Road Traffic Messages), PTI Gublic Transport
The Peopletive of DAB Data Brondensting
Technolish Ad Sandel OM 1909.

# The 4 design goal for TPEG

- to be bearer independent broadcast protocol
- to be approapriate to low to high bit rate systems
- to provide a rich and flexible description of information

# to support ITS

• to be openly specified and appropriate to both commercial

and public service models of

operation

The Perspective of DAB Data Broadcasting Technology and Services, May 2002







# IV. DGPS Service The Perspective of DAR Data Broadcusting 30 MBC Technical R&D Center Technology and Services, May 2002

# **Required Accuracy level for DGPS**

• Navigation: 1-5 m

5-10 m

• Construction, : cm

• Accurate Survey: mm

• Personal Mobile Terminal: m

# **Accuracy of GPS**

 Usually under 30 m with fluctuation (after exclusion of SA error)

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 31



# **Operation of DGPS System**

- DGPS referation system
- receives GPS signal and calculates the errors compared with accurated surveyed points values
  - transports the calculated DGPS data to broadcasting station
- Broadcasting station
  - broadcasts received DGPS data with minimum time delay
- Mobile station (User)
- receives GPS signal and broadcasted DGPS data simultaneously and calculates the compensated points values

The Perspective of DAB Data Broadcasting Technology and Services, May 2002







# Activities for the ITS using Broadcasting System

- 1996: R&D started for traffic information using FM DARC includes Traffic Message Set for FM DARC
- 1997 : R&D started for DGPS coorperation with KAO
- 1999: Carrying out the national R&D Project for "The development of traffic and DGPS system using FM DARC" under sponsorship of the MIC
- 1999: Becomes Vice President Company for ITS Korea
- 1999 : Starts Pilot service for Traffic and DGPS service using FM DARC

(Operates Traffic, DGPS and others information Center)

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 37



# Activities for the ITS using Broadcasting System

- 2000-2001: Carrying out the development for "The Korean national standard for traffic data transmission" under sponsorship of MOCT
- 2000 : The Korean delegate for the ISO TC-204 (ITS)
- 2002 : will start the Commercial service for Traffic and other data service using FM DARC

38

• and trying to adopting the services for DAB data system

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





# V. R&D of MBC R&D Center for Data Broadcasting

The Perspective of DAB Data Broadcasting Technology and Services, May 2002





# Traffic Information Receiver for FM DARC

(with dynamic traffic data)

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

39

MBC Technical R&D Center

# VI. DAB Receivers

The Perspective of DAB Data Broadcasting Technology and Services, May 2002

40









# VII. Conclusion

- Various data services will be available with new technology, DAB
- Digital broadcasting systems should not be viewed as competitors to exsisting mobile communication systems
- Combining the broadcasting channel with mobile communication channel would give a new and efficient mobile service system
- Researches required to find out the service requirements before assigning the broadcasting channel capacity

44

MBC Technical R&D Center

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 Thanks you !!!

**Any Question?** 

The Perspective of DAB Data Broadcasting Technology and Services, May 2002 45