

Superfine Flip-Chip Interconnections in 20-µm-pitch

Manabu Bonkohara

Electronics System Integration Dept. ASET

Contents

- Introduction
 - Background and abstract of our development
- Performance of 20-µm-pitch bonding
 - Reliability of flip-chip Au-Au bonding
- Low temperature interconnection
 - Ultrasonic flip-chip bonding
 - Cu bump bonding
- Summary

E-SI Research Scheme

Packaging Trend

Important Factors

Hierarchy of Design Rules of Interconnection

Development Schedule

(FY) 1999 2000 2001 2002 2003 Structure/Process Development Brush Up 3D-OE Defining 3D Structure and Development Total Process Flow Sample Build Integration & Performance Unit Technology & Check Interface Integration & Brush Up High Speed Memory Module **Application Images** System on Package (SoP) of 3D Technologies Ultra-High Density Interposer ******************

Technology Map

Structure of the 3D Module

Chip Stacking Technology Map

- Introduction
 - Background and abstract of our development
- Performance of 20-µm-pitch bonding
 - I Reliability of flip-chip Au-Au bonding
- Low temperature interconnection
 - Ultrasonic flip-chip bonding
 - Cu bump bonding
- Summary

Reliability of flip-chip Au-Au bonding

- Purpose
 - I Interconnection reliability of 20-µm-pitch flipchip bonding.
 - I Effect of CTE of underfill resin.
- Methods
 - I Chip-on-chip (COC) structure.
 - I Three kinds of filler content.
 - -40°C to 125°C, up to 1500 cycles. Electrical tests of daisy-chain circuits.
 - I Failure analysis and simulation.

Experimental model

Material Properties of Underfill Resin

	Unit	Resin A	Resin B	Resin C
Filler Contents	wt %	0	50	60
Elastic Modulus	GPa	3.2	6.0	8.5
Тд	°C	136	136	134
CTE (<tg)< td=""><td>ppm/°C</td><td>71</td><td>41</td><td>33</td></tg)<>	ppm/°C	71	41	33
CTE (>Tg)	ppm/°C	192	103	106

Reliability Test Results

Failure Analysis Results

Results of FEM Analysis

Maximum Plastic Equivalent Strain

Maximum Plastic Equivalent Strain

- Introduction
 - Background and abstract of our development
- Performance of 20-µm-pitch bonding
 - Reliability of flip-chip Au-Au bonding
- Low temperature interconnection
 - Ultrasonic flip-chip bonding
 - Cu bump bonding
- Summary

Ultrasonic Flip-chip Bonding

- Purpose
 - Basic evaluation of ultrasonic flip-chip bonding (UFB) of 20-µm-pitch bumps.
- Methods
 - I Chip-on-chip structure.
 - Positional accuracy.
 - I Electrical test with daisy chain circuits.
 - Chip damage check.
 - I Micro-analysis of bonding interface.

COC Structure for 20µm-pitch Interconnections

■COC Structure

Au bump (20μm-pitch, 12μm sq. , 1844pin) Si Chip (10mmsq.) Al Pad Si Interposer (18mm sq.)

■20µm-pitch Au Bump

SSET

UFB Conditions

UFB Bonding Accuracy

■Positional Tolerance Data

↓UFB bonding accuracy was confirmed within • 2μm.

UFB Connection Resistance

■Electrical Resistance Data

↓UFB connection resistance was stable.

Daisy Chain 2

UFB Damage & Bondability

■After Si Etching

Back Side of Al Pad

■FIB Analysis

Cross section of interconnection

No remarkable damage by UFB was observed.

.C/SET

TEM Image & Lattice Pattern

↓The solid phase bonding interface was discontinuous boundary with some dislocations and vacancies.

- Introduction
 - Background and abstract of our development
- Performance of 20-µm-pitch bonding
 - Reliability of flip-chip Au-Au bonding
- Low temperature interconnection
 - Ultrasonic flip-chip bonding
 - Cu bump bonding
- Summary

Copper Bump Bonding

- Purpose
 - Basic evaluation of dry process applicability to under bump metallurgy (UBM) removal.
- Methods
 - Application of ion milling.
 - Analysis of residues around bumps.

Dry Processes Applied to UBM Removal

Ion Milling to Bumped Wafer

Si & N were detected.

Ti was detected. (small amount)

Ti was detected.

SEM Micrograph of Cu Bumps

- Introduction
 - Background and abstract of our development
- Performance of 20-µm-pitch bonding
 - Reliability of flip-chip Au-Au bonding
- Low temperature interconnection
 - Ultrasonic flip-chip bonding
 - Cu bump bonding
- Summary

Summary

- Reliability
 - The reliability strongly depended on the CTE of underfill resin.
 - The fractured portion was identical with the maximum plastic equivalent strain.
 - 1 % or less value of the maximum plastic equivalent strain certified more than 1000 cycle of TCT life.
- UFB
 - Bonding accuracy was confirmed within 2μm.
 - The fundamental bondability of UFB was confirmed with no damage around aluminum pads.
 - Some dislocations and vacancies were observed at the interface, however, the atomic level bonding was confirmed.
- CBB
 - Dry process was applied to UBM removal.

Four Layer Stacked Structure with 20µm-pitch

Acknowledgement

This work was performed under the management of ASET in the basic plan of Research and Development on Ultra High-Density Electronics System Integration supported by NEDO.

