A GRNN Classification of Statistically Designed Experiment

  • Published : 2002.10.01

Abstract

Plasma processing plays a crucial role in fabricating integrated circuits (ICs). Manufacturing ICs in a cost effective way, it is increasingly demanded a computer model that predicts plasma properties to unknown process inputs. Physical models are limited in the prediction accuracy since they are subject to many assumptions. Expensive computation time is another hindrance that prevents their widespread used in manufacturing site. To circumvent these difficulties inherent in physical models, neural networks have been used to learn nonlinear plasma data. A generalized regression neural network (GRNN) [I] is one of the architectures that have been widely used to analyze complex chemical data. I...

Keywords