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Introduction

The numerical simulation of viscoelastic flow around a sharp entrance corner has posed
the greatest challenge, because it is formidable difficult to obtain the solution for high
Deborah number flow. There are several reasons for the failure of the numerical simulation
of the planar 4:1 contraction flow at high Deborah number. It has been known that the
numerical scheme plays a significant role in the stability of the convergent solution. Also, the
solution of 2 numerical simulation is very dependent on the constitutive equations. Although
the numerical technique is important, the selection of the constitutive equation is more
crucial.

In this study, we investigate the high Deborah number flow described by the 8 most
popular differential constitutive equations such as the Maxwell, Leonov, Giesekus, FENE-P,
Larson, White-Metzner models and the Phan-Thien/Tanner(PTT) model of exponential and
linear types. We have employed the discrete elastic viscous stress splitting(DEVSS) and
streamline upwinding(SU) methods in order to split the extra stress tensor and also stabilize
the convective term in the constitutive equation. All the computational results are examined
according to mathematical stability analyses of constitutive equations.

Governing equations

We consider a steady, isothermal, incompressible flow. The continuity equation and the
conservation of momentum are given by

V.y=0 (D
py-Vv=-Vp+V-1+f @
where v is the velocity, p is the density, p is the pressure and ; is the extra stress tensor.

The simplest constitutive model developed from the continuum mechanics is the upper
convected Maxwell model:

Vo1
c+—4-6)=0
c+5l-9)=0 ©)
g=-pi+Gg¢
Z is the upper convected time derivative of the tensor . , o is the total stress tensor and

@ is the relaxation time.
The Leonov model based on irreversible thermodynamics is given by
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g=—P£+Gf%J£

I, =tte, I, =tr£", I, =detc=1
The simplest Giesekus model is
v
g+%[agz+(l—-2a)=—(l—a»__]=(=) )
oc=-pS+G¢ 0<ac<x<l

where o is the positive numerical constant.
The FENE-P constitutive equation is written as

v —
c+L(c2+I2 d c—£)=0

v

+ = {\Kc-9)=0
¢+ (Ke-9)=0 ©)
g=-ps+GK¢
K=2eld 1.=3 "7 [ :const.

I.-1,
The Larson model derived from modification of the Doi-Edwards reptation model is

v o1

+— B, )c-9)=0
4 P ( 1L =) 2 %)

pd+

7=-r8 50y

B(1,)= 1+-§-(1, -3), 0<¢é<1
The upper convected Phan-Thien/Tanner model of exponential and linear types is given by

;+—;—exp[£(1, -3)] (g—g)= 0

r g + % [1+£(1,-3)] (g—g)z
g=-pS+G¢c
The White-Metzner model introduced by modification of an upper convected Maxwell model
is

®

v
c+—=lc-d)=0 9
e v
g=-pd +Ge
where, y=42e:e and 7(7)=KM7H

Numerical scheme

We investigate the planar 4:1 sharp-corner contraction flow with the boundary condition
shown in Fig.1.
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Fig.1. Boundary conditions of the 4:1 contraction flow problem

The streamline-upwinding scheme and the discrete elastic viscous stress splitting are

employed in the numerical solution of viscoelastic flows.
The FE formulation of the Leonov model is expressed as

v I,-1,
<¢,, c+i(c + 3 E_£)>=Q
(8 pv-Yv)= <¢,, V-[— p£+G(%)ng+2770%—_§_)]+fi>
<¢,,

;Q.
@IQ

The symbol ;) denotes the integration over the domain.

Results and Discussion

We obtained the convergent solution of the 8 differential constitutive equations. The upper
limit values of the Deborah number and the mathematical stability characteristics of
viscoelastic constitutive equations are shown in Table 1.

Differential Models Type of Instability Theo?lt’l?:ll‘)l;mlt

Upper convected Maxwell Dissipative unstable 6.67

Leonov CE under Specified Globally Hadamard and 130
Stability constraints dissipative stable

Giesekus D‘is§ipaFive stable (0<a<1/2) 200

Dissipative unstable (1/2<a < 1) 0.19

i FENE Glob.all.y H?damard and 5

dissipative stable
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Larson differential . Hadamard and 1
dissipative unstable
White-Metzner Hadamard and
Viscosity trun;ig?;lsat shear rate 1 | dissipative unstable 10.67
Upper convected Phan-
Thien/Tanner Hadamard stable; 10
(linear) Dissipative stability
Upper convected Phan- Depends on dissipative
Thien/Tanner terms 17.3
(exponential)

Table 1. The upper limit of the Deborah number and the mathematical stability
characteristics (Kwon, 1995)

De =U@/ L is the Deborah number, where U is average downstream velocity, 8 is
relaxation time and L is the half width of downstream channel.

It is verified that mathematically well-posed constitutive equations proven from the
stability analysis yield convergent numerical solutions in higher Deborah number flows. As a
result, solutions for relatively high Deborah number flow can be obtained when one employs
the Leonov, the PTT or the Giesekus constitutive equation as a viscoelastic field equation.
By examining the region of solutions with loss of evolution, the close relationship between
numerical convergence and mathematical stability of model equations is clearly
demonstrated.
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