The Development of a Biofilter to Reduce Atmospheric Methane Emissions from MSW Landfills

Soyoung Park, K.W. Brown and J.C. Thomas

Texas A&M University, Department of Soil and Crop Sciences
e-mail: SoyoungPark@neo.tamu.edu

요 약 문

Biofilter performance to reduce CH₄ emissions from MSW landfills was tested under a variety of environmental and design conditions. The optimum soil moisture content for CH₄ oxidation in a loamy sand was 13% by weight. The addition of NO₃-N did not affect the CH₄ oxidation rate. Soil depths of 30 cm and 60 cm were equally efficient in CH₄ oxidation. When the CH₄ loading rate was decreased, the percentage of CH₄ oxidized increased. The maximum CH₄ oxidation rate was 27.2 mol m ²d⁻¹ under optimum conditions (loamy sand soil, 13% moisture content, 30 cm soil depth, and an loading rate of 32.8 mol m ²d⁻¹). Based on the above results, the installation of a properly sized and managed biofilter above a landfill cover should be capable of achieving a major reduction in atmospheric methane emissions from MSW landfills built with RCRA covers.

Key Words: Methane, oxidation, biofiltration, greenhouse gas, landfill gas.

1.Introduction

Methane is a very potent greenhouse gas, second only to CO₂ as an anthropogenic contributor to global warming (U.S. EPA, 1999). Its contribution to global warming is significant since it is approximately 20–35 times more effective at trapping heat than CO₂ (Boeckx et al., 1996; Parsons, 1995; U.S. EPA 1999; Yasushi et al., 1993).

Methane can be degraded in the presence of oxygen by methanotrophic bacteria. Microbiological CH₄ oxidation in aerated soil is an important sink for CH₄ emissions (Bender and Conrad, 1995). Methane from many modern municipal solid waste landfills with RCRA (Resource Conservation and Recovery Act) covers is vented directly to the atmosphere, except for some of the largest landfills at which it is collected and burned.

Proper application of microbiological oxidation of CH₄ in soil may provide the basis for designing biofilter systems through which landfill gas may be passed prior to its release to the atmosphere. Therefore, the objective of this study was to develop a lab-scale model biofilter system using soil as the filter bed medium and to evaluate the effect of environmental and design factors on the CH₄ oxidation capacity of the soil biofilter system.

2. Materials and Methods

A series of laboratory experiments were conducted using soil columns packed with loamy sand to evaluate the major factors controlling the CH₄ oxidation capacity of a soil biofilter (Fig.1).

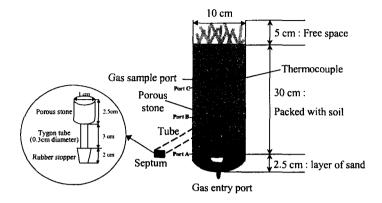


Fig. 1. Schematic diagram of a soil column and gas sampling device.

Before the columns were filled with soil, fertilizer was added to the soil to insure adequate plant nutrition. After the columns were filled with soil, they were planted with ryegrass, *Lolium perenne*, (1.45 g seed per column) and kept moist for periods of 30 or 90 days. After the 30 or 90 day incubation period was completed, CH₄ was introduced at a controlled rate to the gas entry port in the bottom of the columns using a cassette pump. The loading rates were 16.4, 24.6 and 32.8 mol CH₄ m ²d⁻¹. Following a 48-hr equilibration period after the introduction of CH₄, gas samples were taken on 3 successive days from all sampling ports. Samples were analyzed for CH₄ and O₂ concentration using a gas chromatograph and an oxygen meter. CH₄ oxidation rate was calculated from the difference between inflow and outflow CH₄ concentrations and CH₄ loading rate.

3. Results and Discussion

Gas Concentration Profiles

The CH₄ concentration increased with depth and the O₂ concentration decreased with depth (Fig. 2). The depth of peak decrease in CH₄ concentration varied with treatments and CH₄ loading rates. The decrease in O₂ concentration with depth was due to O₂ consumption by methanotrophic activities and indicates the area at which the majority of CH₄ oxidation was occurring.

Effect of Soil Moisture

The loamy sand soil with 13% moisture content had higher oxidation rates, than the same soil with 5 or 20% moisture content (Table 1). The higher moisture content (20%) reduced methanotrophic activity by restricting O_2 diffusion in soil. Although gas diffusion in the drier soil is faster than in wetter soil, the lower moisture content (5%) reduced methanotrophic activity due to water stress. The optimum moisture content of

13% allowed both rapid gas diffusion and sufficient methanotrophic activity to oxidize CH₄.

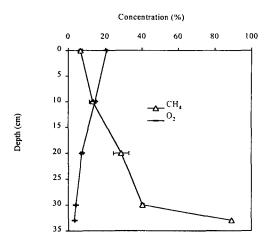


Fig. 2. Gas concentration profiles in 30cm deep soil columns with 13% moisture content, 25 mg kg 1 NO₃-N, 32.8 mol CH₄ m 2 d 1 loading rate, and a 30 day incubation time. Data points are means \pm SD (n=3).

Table 1. The influence of soil moisture content on CH₄ oxidation rate in 30 cm deep soil columns with 25 mg kg 1 NO₃-N, 32.8 mol CH₄ m 2 d 1 loading rate and a 30 day incubation time. *All data are presented as the means \pm SD (n=3). Means with same letter are not significantly different at the a= 0.05 level.

Moisture Content	CH₄ oxidation rate*	Total CH ₄ Oxidation
(%)	(mol CH ₄ m 2 d $^{-1}$) \pm SD	(% of applied CH ₄)
5	24.4 (±0.49) b	74
13	27.2 (±0.17) a	83
20	18.1 (±1.84) c	55

Effect of NO₃-N

The treatments of 10, 25 and 50 mg NO₃-N kg ¹ soil had similar oxidation rates. This indicates that the amount of NO₃-N added to soil has no effect on the CH₄ oxidation rate. Periodic nitrogen additions to biofilter soils will be necessary to support a healthy vegetative cover, which prevent erosion and remove excess water. The results presented here indicate that NO₃-N can be used as a nitrogen source to support plant growth in a biofilter system without adversely influencing CH₄ oxidation

Effect of Soil Depth

No significant difference was found between CH₄ oxidation rates in 30 cm and 60 cm deep soil columns. Methane oxidation rates in both soil columns showed peak oxidation rates at approximately 30 cm depth. This indicates that 30 cm is depth in the biofilter at which the methanotrophic community will develop. The results of this experiment indicate that both 30 and 60 cm soil depth were equally efficient in CH₄

oxidation at a CH₄ loading rate of 32.8 mol CH₄ m⁻²d⁻¹.

Effect of CH₄ Loading Rate

As CH_4 loading rate decreased, the total amount of CH_4 oxidized increased (Table 2). Methane loading rate is an important factor which determines biofilter efficiency. Too high a CH_4 loading rate will reduce the O_2 in the soil air, which may inhibit methanotrophic activity. Too low a CH_4 loading rate may not stimulate methanotrophic activity and thus CH_4 may not serve as suitable growth substrate.

Table 2. The influence of CH₄ loading rate on CH₄ oxidation rate in 30 cm deep soil columns with 13 % moisture content, 25 mg kg ¹ NO₃-N and a 90 day incubation time. *All the data are presented as the means ±SD (n=3). **Means of total CH₄ oxidation followed by the same letter are not significantly different (*a*=.05).

CH ₄ loading rate	CH ₄ oxidation rate*	Total CH ₄ Oxidation**
(mol CH ₄ m ⁻² d ⁻¹)	$(\text{mol CH}_4 \text{ m}^2 \text{d}^{-1}) \pm \text{SD}$	(% of applied CH ₄)
16.4	13.7 (±0.63)	83 a
24.6	18.9 (±0.23)	77 ab
32.8	23.4 (±3.81)	71 b

4.Conclusions

Biofilter performance was tested under a variety of environmental and design conditions. The optimum soil moisture content for CH₄ oxidation in the loamy sand was 13% by weight. The amount of NO₃-N added to soil had no effect on the CH₄ oxidation rate. At a CH₄ loading rate of 32.8 mol CH₄ m⁻²d⁻¹, the 30 and 60 cm soil depths were equally efficient in their ability to oxidize CH₄. As the CH₄ loading rate decreased, the percentage of applied CH₄ that was oxidized increased. Based on the this study, the use of a properly sized and managed biofilter should be capable of achieving a major reduction in atmospheric CH₄ emissions from MSW landfills built with RCRA covers.

5.References

Bender, M. and R. Conrad. 1995. Effect of CH₄ concentrations and soil conditions on the induction of CH₄ oxidation activity. Soil Biology & Biochemistry 27:1517-1527.

Boeckx, P., O.Van Cleemput and I. Villaravo. 1996. Methane emission from a landfill and the methane oxidizing capacity of its covering soil. Soil Biology & Biochemistry 28:1397-1405.

Parsons, M.L. 1995. Global warming: The truth behind the myth. p.159. Insight Books, New York.

U.S. EPA 1999. U.S. methane emissions 1990–2020: Inventories, Projection, and Opprotunities for Reductions. EPA/430/R-99-013.

Yasushi, M. M. Hanashimn, S. Nagano and A. Tanaka. 1993. Generation of greenhouse effect gases from different landfill types. Engineering Geology 34:181-187.