개선된 RBF 신경망을 이용한 여권 인식

The Passport Recognition by Using Enhanced RBF Neural Network

  • Published : 2002.11.01

Abstract

출입 관리는 위조 여권 소지자, 수배자, 출입국 금지자 또는 불법 체류자 등의 출입국 부적격자를 검색하고 출입국자를 관리하기 위하여 행하여진다. 한편, 여권에는 사진, 국적, 성명, 주민등록번호, 성별, 여권번호 등을 포함한 정보들로 이루어져 있다. 이러한 출입국 관리 시스템은 출입국 심사 시간이 길어 출입국자에게 불편이 따르고 또한 출입국 부적격자에 대한 정확한 검색이 불분명하여 체계적으로 관리하기가 어렵다. 이러한 종래의 문제점을 개선하기 위해 영상 처리와 문자 인식을 이용한 여권 인증 시스템을 제안한다. 본 논문에서는 여권 영상에 대해 소벨 연산자와 스미어링 기법 그리고 윤곽선 추적 알고리즘을 이용하여 사진영역, 코드 영역 및 개별 코드 문자를 추출하였다. 추출된 개별 코드 인식은 ART2 알고리즘을 기반으로 한 RBF 신경망을 제안하여 여권 인식에 적용하였다. 제안된 방법의 성능을 확인하기 위해서 실제 여권 영상들을 대상으로 실험한 결과, 제안된 방법이 여권 인식에 우수한 성능이 있음을 확인하였다.

Keywords