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Abstract:  For detection of digitally modulated signals,
the receiver must be provided with accurate carrier phase

and symbol timing estimates. So far, lots of algorithms have

been suggested for those purposes. In general, a
interpolation filter with TED(Timing Error Detection) like
Gardner algorithm is popularly used for symbol timing
estimate of digital communication receiver. Apart from the
perfomance point of view, a multiplicative operation of any
interpolation filter limits the symbol rate of the system.
Hence, we suggest a new symbol timing estimate algorithm
for high speed burst-mode fixed wireless communication
system and analyze its performance in the AWGN channel.

1. Introduction
In general, channel characteristics have great influence on
not only the structure of communication system but also the
performance of it. The AWGN channel, which has no
fading and no non-linearity, is the basic channe! model that
is familiar with most communication system designers and
is the start point of various analysis such as Rayleigh fading,
Rician fading and so on.
Unfortunately, there are no AWGN channels in our real
world. Then, what are we doing with performance analysis
of any system in the AWGN channel?
We think that fixed LOS(line-of-sight) wireless channel of
which carrier frequency is above 10GHz has almost
theoretical AWGN channel properties because there are no
fading and no multipath. There only exists a path loss that
is the function of distance. It provides us with a good
reason for considering a fixed LOS wireless channel over
10GHz as merely an AWGN channel. Hence, from now on,
we focus our attention on the fixed LOS wireless system
whose carrier frequency is above 10GHz.
Buy the way, a burst transmission system has its unique
preamble pattern for many purposes such as packet
detection, timing and frequency estimates, etc. We suggest
a new preamble pattern that is only suitable for above
channel environment.
If we use a square wave pulse train as preamble of burst
transmitted packet, the output of any pulse shaping filter in
the transmitter will be a form of a single tone since the first
frequency component of that pulse train only remains after
passing low pass filter. Thanks to the nature of any single
tone, the preamble is not affected by the channel distortion.
In other words, the receiver can always receive the

preamble as a form of single tone with mere amplitude
change and without any distortion caused by the channel
and RF circuit of both transmitter and receiver. It means
that there are no ISI components in the filtered square wave
pulse train preamble sequence. However, we can directly
use a sinusoid in the portion of preamble instead. On the
basis of these properties, the main idea of this new
algorithm is summarized as follows.

If we detect the maximal point of a single tone, we can
directly find the exact symbol timing estimate. The
maximal point-searching algorithm will be simply
materialized with a group of sample delay blocks, symbol
interval integrators and maximal selector, not multiplicative
device.

However, in most cases, we do symbol timing estimate
under the existence of frequency and phase errors. Effects
of these errors on the symbol timing estimate will be
investigated in this paper.

This paper is organized as follows. In Section 2, we present
the system model. Section 3 is for the mathematical
analysis of that system. The discussion is done in Section 4.
Finally, Section S contains our conclusions and remarks.

2. System Models
The proposed structure of symbol timing estimate block in
the receiver is shown in Figure 1.

Figure 1. The structure of symbol timing estimate

We assumed in Figure 1 that there exist N samples per
symbol, the sampling frequency is f; and symbol period is
T, . The integration time of symbol integrator is dependent
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both on the required energy to find the maximal point with
sufficiently high detection probability and on the frequency
error of the system.

We can write the burst signal transmitted as (1)

M~ N N
s = {Ze, + 21,}4.(1 -nT,) cosQaf,t)+ D0, - hit ~ nT, ) sin(2f,1)
n=M

a=0 n=M
(D

Where {P,} represents the preamble sequence, {/,} and
{Q,} are discrete information-bearing sequences of
symbols, A(?) is the impulse response of the puise shaping
filter, f; is the carrier frequency.

Note that the preamble sequence is BPSK signal while the
information-bearing sequence is QPSK. Let us assume that
{P.} is square wave pulse train. For the convenience, we
Jjust focus on the portion of the preamble of the transmitted
signal because the receiver only handles that part for the
symbol timing estimate.

In general, a square wave pulse train with symbol duration
T, can be described by Fourier series expansion.[1] If we
used a root raised-cosine filter as pulse shaping filter, the
output of {P,}, filtered by h(1), will be a single tone whose

frequency is f, ———L . This property enables us to

2T,
simplify the mathematical expression of the preamble part
as cos(2af,t) .
Then, the received preamble sequence can be represented as
rp (1) = cos(27f 1) - cos(2nf .t + 6) + n(t) 2)
Where n(t) represents the additive white Gaussian noise

N
with zero mean and spectral density TO. If we use the

receiver bandpass filter of bandwidth B(= TL ), n(t) can be
represented by

n(t) = n, (1) cos(2ft) - n (£)sin(27f?) (3)
Note that n.(1) and n,(t) are lowpass Gaussian processes
with zero mean and variance NyB. [5]

3. Mathematical Analysis
Figure 2 shows the proposed quadrature receiver structure
that performs the noncoherent detection of the preamble
sequence.

Figure 2. The proposed quadrature receiver

Let us assume that there is an error Af = f, — f in carrier

frequency between transmitter and receiver, then we can
write x,(?) as

x; = %005(279([,1) -cos(2mAft + 60) + —é—nc @) )

Similarly,

xg(t) = —;—cos(Zzgfpt) sin(2aft +6) + —;-ns o ©®

If the over-sampling ratio is L, /-th input to symbol
integrator, after sample and hold in Figure 1, y,(nT,) is

yu(nTy) = %COS{(n - %Jn} . cos{ZnAfTs (n - %] + é?}
+§nc{(n—%]n} ®)

L L
1 1
+— T 7
2nr{(n L) ,} (M
Note that 27f, = 2 and f, = =
ote that 7_17",,——77— an fs-}—s-.
But for AfT, <<1, the effect of phase shift can be ignored.

In addition, statistical characteristics of additive white
Gaussian noise will be the same irrespective of the time
shift. Namely, it is stationary.

Hence, we can rewrite (6) and (7) as

yp(aT) = %[cos{(n - —Iijﬂ} ~cos(2aAMT, ) + n (nT, )}

s

®
yo(nTy) = -;—[cos{(n - %)n} -sin(27AmT, ) + n, (nT, )]
&)
After summation over P symbols in the integrators, we have
Pl
¥y =Z)’J1("Ts) (10)
n=0
P-l
Yo =D you(nT,) (11)
n=0

To eliminate the phase ambiguity of +7 radians, we choose
only even terms among P symbols in (10) and (11), then

N,-l
Zy =Y = Z}’n@kTs) (12)
k=0
N,-1
Zy =Yg = Z yoi(2kT,) (13)
k=0

To find the optimal symbol timing estimate irrespective of
frequency is to select maximal values of equation (14)

mIaxZ, =Z,2,+Zé, (14)
Note that Z, and Z , are statistically independent
Gaussian random variables with means m, and mg, and

common variance o} and that Z, has a noncentral chi-
square distribution with noncentrality parameter

(15)

2_ 2 2
s =my +my
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Now, we define a new random variable R, = ‘/Z_, . The pdf
of R, has Rician distribution as {16)
2, .2
r r +s rs
PRI(7)=—TexI{~ > 21 }'10[—;—J , 720 (16)

o Oy o

Where /() is zero-order modified Bessel function.

However,
1 (1 &
my = E[Z,]= Ecos(—z n) écos(MAfkTs) (17
Similarly,
1 (1 &
My = E[Zgy] = -icos(-ZﬁJZsianrAﬂcTs) (18)
k=0

Since sampled and delayed version of n(z) has the same
spectral density Ny and each n(24T,)is statistically

independent, then

N,N
o} =var[Z,,]=var[ZQ,]= ’; 0 (19)
. 2
(N, 2727
s12 _-:_I_COSZ(L,TJ. S(’”__L_“_/T{_)_ (20)
4 L sin(2720/T, )
Hence, the signal degradation with frequency error is
1 [sin(N,220/T) P
D)= | —~ 21)
N, | sin@mT,)

But for N,>>1 and zMT, <<1, the degradation due to
frequency error is {3]

2
[sin(V, 228/T,)
D) = [-——»———NP AT }

Note that, in equation (17) and (18), /=0 is the index of the
maximal point, that is, exact symbol timing estimate. Then,
the detection probability is as (23)

L1
po=]J®>r)
i=1
Where P is the probability density function of i-th sample
point.
For large SNR, we may make the approximation [4]

(22)

23)

I
rs rs 2ars, |2
1{-;} ~ exp[-%—) / ( - J (24)
o o gy
so that In/, (I%J ~ L (25)
oy oy
Then we can approximate (23) as
) ©
po=11 [pwar= [Rewr (26)

i=l s;+5y 51+,

2 2

4. Discussion
For the analysis of the preamble detector, we assume that
the symbol rate is 10Mbps and L=4.

Figure 3 shows the signal degradation with respect to the
frequency errors with varying the integration time.
0- o : TR

<0.25 :
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Frequency errorfkHz}
Figure 3. The signal degradation with varying the
integration time

We observe that the signal degradation is proportional to
both the frequency error and the integration time N,,.

This tells us that large integration time is not always
profitable to the performance of the estimate process. If
there is no or few frequency error, we can get more energy
which guarantees the high detection probability of exact
symbol timing. But the frequency error limits the
integration time. However, the amount of the signal
degradation of each output of symbol integrator will be the
same. It means that, a maximal point is always indicates the
exact symbol timing in spite of frequency errors. There may
be some changes in detection probability when a frequency
error exists.

The relationship between the detection probability and the
integration time is shown in Figure 4 when the frequency
error is 1kHz.

Integration time(Np)

Figure 4. The detection probability of symbol timing
estimate with varying bit energy to noise ratio

With a fixed frequency error, as we increase the integration
time, we can get more exact symbol timing estimate. In
other words, the longer the integtration time is, the higher
the detection probability of selecting the maximal sample
point will be guaranteed. But the preamble sequence itself
is a redundancy that lowers the packet efficiency. Hence,
we can choose the proper integration time. From figure 4,
we can see that N,=32 is sufficient to choose the optimal
symbol timing with almost no occurrence of missing in case

—f}—b is greater than 12dB. If we want decreage the preamble
0
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length upto about N, =20, we should assign the required

% above 16dB in the link budget design.
i
Figure 5 shows the effect of frequency errors on the

E, .
detection probability when TVL is 16dB.

P R i
Integration time(Np)

Figure 5. The detection probability with varying frequency
errors

Under Np=80, the frequency error has no effect on the
detection probability. Note that high frequency error with
large integration time causes the detection probability low.
This coincides with the result shown in Figure 1.

. E .

Figure 6 shows the effect of ]—VP— on the detection
0

probability when the frequency error is

Figure 6. The detection probability with varying integration
time

Like the result in Figure 4, N,=16 is sufficient in case -1%’—
0
is above 16dB. A short preamble is required in most

systems for the sake of the data efficiency.

5. Conclusions

In this paper, we presented a new structure for symbol
timing estimate and analyzed its performance under various
conditions. These results in section 4 will be good
references for choosing the preamble length under specific
environment if we use the suggested algorithms.

There have been a lot of good algorithms for symbol timing
estimate. But, sometimes, it is difficult to apply these
algorithms directly to hardware materialization with various
kinds of reasons like hardware complexity, operation speed,
cost and so on. The suggested algorithm in this paper can
be applied to some systems. It is all up to both a hardware
designer’s choice and a system specification whether to use
the algorithm suggested or not.
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