Reasoning about Multiple Access Control Configurations

Supakit Dangprasert and Yongyuth Permpoontanalarp
Logic and Security Laboratory
Department of Computer Engineering, Faculty of Engineering,
King Mongkut’s University of Technology Thonburi,
91 Pracha-Uthit Road, Bangkok 10140, Thailand
Tel. +66-2-470-9087, Fax.: +66-2-872-5050

e-mail : supakitd@yahoo.com, yongyuth@cpe.eng kmutt.ac.th

Abstract: At present, many applications independently
provide access control for their own resources, for example
Web, Databases and Operating Systems, etc. Such
independent access control systems result in multiple access
control configurations each of which deals with the access
control in its own application context. Since those multiple
configurations are operated in isolation, and maintained by
possibly different administrators, they are likely to be
incoherent. In this paper, we propose a logical specification
to reason about multiple access control configurations. Our
specification can be used to detect the incoherence in
multiple configurations. Furthermore, it offers many kinds
of policies for multiple configurations that can capture
several kinds of requirements for multiple access control
systems.

1. Introduction
Access control is concerned with the restriction of accesses
to resources in a computer system. In the past, the access
control was available only at Operating Systems (OS) level.
Such access control aimed mainly to restrict accesses to file
objects which are the main resource of OS. And the access
control configurations at those days were simple to manage.

Nowadays, computer systems become more complex
due to the new development of Internet and Database
technologies. Thus, there are many new kinds of resources
available in a compute system due to the various new kinds
of applications, eg. Database and Internet.

Each of these applications independently provides
access control for their own resources, for example Access
control for Web, Access control for Databases, Access
control for OS, etc. Such independent access control
systems result in multiple access control configurations
each of which deals with the access control in its own
application context. Since those multiple configurations are
operated in isolation, and maintained by possibly different
administrators, they are likely to be incoherent.

In this paper, we study multiple incoherent
configurations for Role-based Access Control (RBAC) [1].
RBAC is an access control which considers users’ job
functionality, ie. roles, in order to make the decision to
grant an access. In general, an RBAC model contains sets
of users, roles and permitted operations. Moreover, such an
RBAC model includes the assignment of a user to a role,
the assignment of a permitted operation to a role and role
hierarchy. The role hierarchy expresses the supervision
relationship between roles in an organization, for example
an engineer is supervised by a manager of engineering

division. Many applications are adopting RBAC as their
access control systems.

Such incoherently access control configurations could
create two main problems, namely, the inconsistency and
the non-coordination of multiple configurations. In the
context of RBAC, there are three main sources of the
inconsistency, namely, the assignment of a user to a role,
the assignment of a permitted operation to a role, and the
role hierarchy.

The assignment of a user to a role in those
configurations is inconsistent if a user is assigned to
different roles in different configurations. For example, in
Database configuration John is assigned to Staff role, but in
OS configuration John is assigned to Anonymous role. As a
result, John who should be able to access a database is
denied to gain such access, since Anonymous role is not
allow to log on a machine.

Similarly, the assignment of a permitted operation to a
role in multiple configurations is inconsistent if a permitted
operation is not assigned to the same role which appears in
different configurations. For example, in OS (client-server)
configuration Lecturer role is allowed to access a shared
folder, but in Intranet (or Internet) configuration the
Lecturer role is not allowed to access the folder.

Role hierarchy in those configurations is defined
inconsistently if the order of any two roles is different in the
configurations.

As a result of such inconsistently defined
configurations, a user may not be able to access a resource
that the user should, or a user may be able to access a
resource that the user should not.

In order to allow a user to access a resource in a system
with multiple applications, it requires that configurations
for those applications are defined in a coordinated way. For
example, suppose that Manager role is allowed to access
salary table. Thus, it must be the case that Manager role is
given select access to the table and is allowed to logon at
any machines in the system. As a result of the non-
coordinated configurations, a user may not be able to access
a resource that the user should. .

In order to deal with these problems, we propose a
logical specification to reason about multiple access control
configurations. Our specification can be used to detect both
the inconsistency and the non-coordination of multiple
configurations. Furthermore, it offers many kinds of
policies for multiple configurations that can capture several
kinds of requirements for muitiple access control systems.

ITC-CSCC 2002

integrity constraint (9) RH inconsistency constraint (8)

assigned-roles,,(U, R)

assigned-op (R, [+/-]P, Obj)

superiory,*(R’,R)

v v

der-authorized-op (R, [+/-]P, Obj)

v

do-authorized-op (R, [+/-] P, Obj)

UR inconsistengy constraint (7)

integrity conbraint (4)

authorized-roles (U, R)

authorized-opg,(R, [+/-]P, Obj)

¢ non-coordination constraint (12) ¢

grant (U, [+/-] P, Obj)

Figure 1. The relationship between predicates and the use of integrity constraints for each predicate

2. Our specification
Our specification extends the logical specification for
general access control [4], and that for RBAC [2] to deal
with reasoning about multiple configurations. Our
specification consists of many sub-specifications where
each of the sub-specifications is defined for an application.

In each sub-specification, there are many rules where
each rule aims to derive a predicate. For application ap,
assigned-roles,,(U, R), assigned-op,(R,+P, O), superior,,
(R’,R), der-authorized-op,(R, +P, O), do-authorized-op,,
(R, +P, O), authorized-op,,(R, +P, O), authorized-roles,,
(U, R) and grant,,(U, P, O) are all predicates used in each
sub-specification. Figure 1 illustrates the relationship
between predicates and the use of integrity constraints for
each predicate. In particular, an arrow from a predicate to
another predicate indicates that the former predicate is used
to derive the latter predicate. And an integrity constraint
written above a predicate means that the constraint is used
for the predicate.

In each sub-specification, predicates assigned-roles,,(U,
R), assigned-op,,(R,+P, O) and superior,,(R’,R) stand for
the assignment of user U to role R, the assignment of
permitted operation P on object O to role R and, and the
superiority of role R’ over R in the role hierarchy for
application ap, respectively. In other words, superior,,
(R’,R) means that R’ supervises R. In fact, these predicates
represent an abstract configuration defined for an
application.

Predicate der-authorized-opa,(R, +P, Obj) in (1) shows
the propagation of authorizations to roles in the role
hierarchy. It is used in the following rule. Note that as a
matter of notation, predicate symbols begin with lower case
letter whereas variable symbols begin with upper case letter
and they are implicitly universally quantified.

der-authorized-op (R, +P, Obj) <>
IR’e R,, [assigned-op,,(R’,+P, Obj) »
superior,,*(R, R’)]
der-authorized-op(R’, -P, Obj) <>
FR’e Ry, [assigned-op,,(R-P, Obj) »
superior,,*(R, R)] 4]

where R, stands for a set of roles for application ap.

The propagation of positive authorization for role-
permission is upward whereas the propagation of negative
authorization for role-permission is downward.

Predicate do-authorized-op,,(R, +P, O) deals with the
conflict resolution between positive and negative
authorizations. For simplicity, we can use an existing
conflict resolution rule defined in [4]. Note that in this
paper, we focus on multiple configurations rather than the
conflict resolution. However, it requires that the following
constraint holds for the predicate.

(do-authorized-op.,(R,+P,0) A
do-authorized-op,,(R,-P,0)) — false)

Predicate authorized-op,,(R, +P, O) is used for the
propagation of authorizations across applications. Indeed,
we use rules (3), (4) and (5) defined for the predicate to
deal with the inconsistency of the assignment of operations
to roles. .

Such rules state three kinds of policies : open, close and
neutral policies. We argue that these three kinds of policies
are useful for expressing requirements for multiple
configurations.

Rule 3 captures the open policy which states intuitively
that if an operation is allowed for a role in at least an
application, then the operation is allowed for the role in all
other applications in which the operation is not disallowed
explicitly.

authorized-op,,{R, +P, O) ¢ Jap
(do-authorized-op,,(R, +P, O) A
O€Objyy AR €Ryp AP OPyyo 1
—do-authorized-op., (R, -P, 0))
authorized-op,,(R,-P, O) «»
do-authorized-op,(R,-P, O) (3)

where ap and ap’ stand for any applications, and Obj,,- and
OP,, stand for sets of objects and operations, respectively,
in application ap .

2048

ITC-CSCC 2002

Rule 4 which captures the close policy states intuitively
that if an operation is not allowed for a role in at least an
application, then the operation is not allowed for the role in
all other applications in which the operation is allowed
explicitly.

authorized-op,,(R, -P, O) ¢ Jap
(do-authorized-op (R, -P, O) A
O€ Objy AR € Ryp- AP OPyy A
—do-authorized-op,, (R, +P, O))
authorized-op (R, +P, O) ¢>
do-authorized-op ,(R,+P, O) (4)

Rule 5 expresses the neutral policy which states that if
an operation is neither allowed nor disallowed explicitly for
a role in‘an application, then the operation is either allowed
or disallowed for the role in the application. This policy is
neutral in that a configuration for an application does not
have any effect on another configuration for an application.

(—o-authorized-op,,(R, +P, O) A
—do-authorized-op,(R, -P, O)) —
(authorized-op (R, +P, O) v
authorized-op (R, -P, O))
do-authorized-op,,(R,+P, O) — authorized-op,,(R,+P, O)
do-authorized-op,(R,-P, O) — authorized-0p,,(R,-P, O)
)

Note that the open and close policy for multiple
applications are similar to those for single application in
that they either maximize or minimize the accessibility in
the system.

Predicate authorized-roles,,(UR) expresses the
propagation of authorized roles for a user according to the
role hierarchy. The following shows a rule for this
predicate, and it is similar to that in [2].

quthorized-roles,,(U,R) <>
IR’ € R,y [assigned-roles (UR’) A
superior,,*(R’,R)] (6

where superior,,*(R’,R) represents the reflexive and
transitive closure of superior,,

We use the constraint (7) on predicate authorized-
roles,, to deal with the inconsistency of the assignment of
users to roles. In particular, the following constraint states
that if user U is authorized for role R in application ap/ and
U and R are recognized in application ap2, then U must be
authorized for R in ap2 also.

VU €U VRER,
(authorized-roles ,)(U, R) AU € Uppz AR € Rypp —
authorized-roles,;>(U, R))
(7)

where U,,; and U,,; stands for sets of users in applications
apl and ap2, respectively.

We use the following constraint to deal with the
inconsistency of the role hierarchy.

VRH, 1, RH) YRR’
(R € Ryp1 A superiorg,*(R, R) A RR’ € Rypr —
superior,,*(R, R))
7

where RH,,; RH,, stands for role hierarchy in
application ap] and application ap2, respectively.

The following is a general constraint on the
configuration.

(assigned-op (R, +P, Obj) A
assigned-op (R, -P, Obj)) — false 9)

where Obj stands for set of objects.

Predicate grant,,(U, P, O) indicates that user U is
granted operation P on object O in application apl. The
rule for the predicate grant for a certain application is
defined as follows.

YUeU,, VPe Op,, VObj & Obj,p,
[grant,,(U, [+/-]P, Obj) <>
IR € R,, (authorized-roles,,(U, R) A
authorized-op (R, [+/-]P, Obj)) | (10)
where U, Op,, Obj,, stands for set of users, operations
and objects in application ap, respectively
The following shows a rule for predicate grant which is
independently of any application.
For applications ap|, ..., apn

grant(U, P, Obj) <>

[grant,,;(U, P, Obj) v grant,,,(U, P, Obj) v ... v
grant,,(U, P, Obj)] (1)

where Obj stands for set of objects

To deal with the non-coordination problem, we employ
the concept of application-level-based supported
authorizations. In the concept, an application in a lower
level provides necessary supported authorizations to
another application in an upper level. In other words, the
concept shows supported authorizations that are required by
an application and are provided by other supported
applications. Consider the non-coordination example
discussed above. Database will be located on top of OS.
The supported authorization, provided by OS, which allows
Manager 1ole to access a table is to allow Manager to lo
on to a machine in the system. :

The concept is formalized and is represented in its
simple form by constraint (12). Intuitively, constraint (12)
expresses that in order to allow user U to perform operation
P on object O in application ap, it requires supported
authorizations, eg. Q’and Q" from supported applications

apyp ... APy.

grant,,(U, P, 0) —»
(grant,,;(U, Q°, O)) A ... Agrant,,,(U, Q”, 0”))
(12)

ITC-CSCC 2002

Recall the non-coordination example discussed in the
introduction. The constraint for the non-coordination
example there is as follows.

granty(U, +select, Db-table) —
IM eMachine grant,(U, +logon-locally, M)
(12)

where Machine stands for a set of machine from which an
authorized user can access Db-table.

We argue that the use of such supported authorizations
concept provides an intuitive and simple way to construct
constraints to deal with the non-coordination.

In the following, we show how our specification can be
used to deal with the inconsistency and the non-
coordination.

Example 1 The inconsistent assignment of user to role
Recall the example of the inconsistent assignment of
users to role discussed in the introduction. Suppose that
{Staff, Anonymous} < Ry, Rypz and John € Uy, Ugpo.
Given the following configuration
assigned-roles ,(john, anonymous)
assigned-roles g(john, staff)
—assigned-roles s (john, anonymous)
—assigned-roless(john, staff)
authorized-roles (john, anonymous) and —authorized-
roles g (john, anonymous) are derived by rule (6), and thus
constraint (7) does not hold. So, the logical inconsistency is
obtained.

Example 2 The non-coordination

Recall the non-coordination example discussed in the
introduction and recall the constraint 12°, If quthorized-op 4
(manager, +select, salary-table) and —3IMeMachine
authorized-op,(manager, +logon-locally, M) can be
derived from any configurations, then the constraint 12’
does not hold. Thus, the logical inconsistency can be
obtained.

3. Related Work
Existing specifications [1][21{3][4] for access control offers
reasoning about a single configuration. Thus, they are
inadequate to deal with the problems of multiple access
control configurations.

[5] proposed a framework which reasons about general
composition of local policies and their effects as a global
policy. Local policies are policies that are defined for a
local unit in an organization whereas the global policy is
the policy for the whole organization. The framework [5]
neither addresses how to compose multiple local policies in
order to satisfy a specific global policy, nor deals with the
inconsistent local policies. Note that the kind of
composition of multiple local policies for satisfying a
specific global policy needs to deal with the coordination of
multiple local policies. Thus, the composition framework
[5] does not deal with the inconsistency and the non-
coordination whereas our approach does.

4. Conclusion

In this paper, we have identified two problems of multiple
configurations which are the inconsistency and the non-
coordination. We have proposed a logical specification
which can be used to detect the inconsistency and the non-
coordination of multiple configurations. Our specification
can be seen as an extension of existing specifications [2][4]
for dealing with multiple configurations. In [6], some case
studies were examined for our specification. Currently, we
are implementing a software prototype which will be
applied to such case studies.

Acknowledgement
The second author would like to acknowledge support from
National Research Council of Thailand.

References

[11 R. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E.
Youman, Role-Based Access Control Models, J/EEE
Computer, 29(2), Febuary 1996.

2] S.I. Gavrila and I.F. Barkley, Formal Specification for
Role Based Access Control User/Role and Role/Role
Relationship Management, In Proceedings of ACM
Workshop on Role-Based Access Control, ACM press,
1998.

[3] E. Bertino, F. Buccafumri, E. Ferrari, and P. Rullo, A
Logic-Based Approach for Enforcing Access Control,
Journal of Computer Security, 8(2&3), 2000.

[4] S. Jajodia, P. Samarati, M.L. Sapino, and V.S.
Subrahmanian, Flexible Support for Multiple Access
Control Policies, in ACM Transactions on Database
Systems, vol. 26, n. 2, June 2001, pp. 214-260.

[5] P. Bonatti and P. Samarati, An Algebra for Composing
Access Control Policies, in ACM Transactions on
Information and System Security, 2002.

[6] S. Dangprasert, Reasoning about Access Control
Configurations, Master Thesis, Department of Computer
Engineering, King Mongkut’s University of Technology
Thonburi, Bangkok Thailand, 2001.

ITC-CSCC 2002

