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Abstract: There exist several forms of transfer function
descriptions for multivariable LTI systems. We treat
transfer function matrix with characteristic polynomial as
its common denominator named Characteristic Transfer-
function Matrices (CTM). First, we clarify necessary and
sufficient conditions of CTM, then, we show some related
lemmas. These interpretations not only offer deeper
explanations but they also provide ways for calculations of
all possible transfer matrices, system zeros, and inverse
polynomial matrices.

1. Introduction

Several forms of transfer function descriptions have been
developed for multivariable linear time invariant (LTI)
systems [1-6]. Coprime factorization of a transfer function
matrix as polynomial or rational matrix fractional
descriptions is comprehensive one and well used to analyze
and/or design control systems. On the other hand, matrix
with coprime rational elements is a most primitive
description and is given straightforward way from set of
scalar systems. Polynomial numerator matrix over least
common denominator is a relevant but compact description.

This paper deals with description of a transfer-function
matrix with characteristic polynomial as its common
denominator named Characteristic Transfer-function
Matrices (CTM) [7], which have ‘nice’ properties. We
clarify necessary and sufficient conditions of CTM, and
also show some corresponding lemmas. These results
explain novel interpretation of transfer matrices and also
provide ways for calculation of system zeros, inverse
polynomial matrices.

2. Definition and advantages of CTM

Definition 1

An m x p pumerator polynomial matrix over common
denominator polynomial of order n, G(s) = %((—3 is said to
be Characteristic Transfer-function Matrices (CTM) of a p-
input m-output nth-order LTI system if and only if it is

given by Equation (1).

_ Cadj(sI — A)B + Ddet(sl — A)

G(s) det(s] - A)

(D

Here 4, B,C and D are, respectively, nx n, px n, mx n,

mx p coefficient matrices with real constant elements of
state equation about the LTI system.

CTM contains a characteristic polynomial explicitly,
thus it has the following nice properties.

(1) The degree of a system, system zeros, system poles are
derived straightforward way.

(2) Denominator is scalar thus inverse matrix is not used
and calculation for connection of systems is easily done.

(3) Non-minimal order, non-invertible and singular system
can be described without cancel of hidden modes.

(4) The description is naturally expansion of scalar system.

Instead, not all elements in numerator polynomial
matrix N(s) are settled arbitrarily even if all constant

elements of 4-tuple {4, B,C, D} are free, and realizable
CTM is constrained.
In the following chapters, a theorem on realizable class

of CTM and corresponding lemma for interpretation of
CTM are shown.

3. Necessary and sufficient conditions of CTM
Theorem 1{7}]

Suppose N(s) be mx p polynomial matrix and let d(s) be
N(s)
d(s)
Transfer-function Matrix (CTM) if and only if G(s)
satisfies the following conditions.

a polynomial. Then, G(s)= is a Characteristic

Condition 1 Every element in the G(s) is a proper real
rational function.

Condition 2 Every k x k& minor of the N(s) contains

| d()*™ or zero. Where, k =1,2,---, p. p =rank N(s)
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Corollary 1

When all eigenvalues of A are distinct, the condition 2 in
theorem 1 can be replaced by an alternative condition 2a.

rankN(4) <1 for all i 3)

Condition 2a

Here, 4, : distinct poles that satisfy d(s)=0

<Proof of Theorem 1>

The proof of this theorem is shown based on Jordan
canonical form in [7]. We will newly provide simpler proof
using Rosenbrock’s ‘system zero’ [1,4].

(Necessity)
Condition 1 is needed for meeting causality.

Necessity of condition 2 is shown by contradiction method.
M)
d(s)
realized in the form of {4, B,C, D} where the relation:
d(s) = det(sl — A) holds. Zeros of the k-input k-output
invertible subsystem can be obtained from the zero
polynomials z,(s) that satisfy,

Suppose a system described as G(s) = can be

z,(s) = ged[det{, F;(s)}] =0 (k=12,---,p) 4
ij
A-sl B/ i
Where kﬁ.j(s)=[ o D”:! The [C' D’] and
i o T
[:B’ d D”T] are, respectively, appropriate & rows of
T
[c D] and columns of [B" D" , which make
det{kP,.j(s)} # 0 forevery k=1,2,---,p.

Rewriting equation (2), we get the zeros of the
subsystem as the following, :

2,(5) = ged[det(4 - sT)det{D" +C'(sI - 4)" B'}]
Ly

N'(s)

d(s)

det N¥(s)
d(s)*

= god[det(A — sT) det( N

= ged[det(4 — sT) ]
i.j

ged[det N7 (s)]
— _bJ

5
d(s)*! ®)

where, NY(s) is submatrix of N (s) consists of
corresponding rows and columns with / and j mentioned in
D’

If condition 2 does not hold, not all z,(s) become
polynomials.

(Sufficiency)
Assume the condition 1, there exists realizations of the
G(s). Additionally, we shall show if condition 2 is satisfied,

there exists a realization of which d(s)=det(s{ ~ A)

among them. To clarify this fact, it is enough to show that
the McMillan degree of the G(s) is not greater than the

degree of d(s).
Let G, (s) be kx k minor of the G(s), then G (s) can
be derived as

det N**
Guls) ==

From assumption (2), everydet N vk (s) is divisible by

©

d(s)*" for k =1,2,---,p, then d(s)can be a common
denominator of all G, (s). Similarly, McMillan degree of
the G(s) is given as order of a least common denominator
of all G,(s) . Thus we see that McMillan degree of the
G(s) is not greater than the degree of d(s)

We have thus completed the proof of Theorem 1. =

Example 1

About the following transfer function matrices, which have
the same input— output properties, (i) is not CTM since this
does not satisfy condition 2, but (ii) and (iii) are CTM.

[1 o] [s—l 0
0 (s-2) 0 (s-1)s-2)

O e P o ireo2)
[(s ~1)s-2) 0 }
0 (s=1)s-2)"
(¢71)] 5 >
(s~-1D(s-2)
Example 2

Consider the system described by matrix with coprime
rational elements as,

(Chal) !
G(s) = (s-a) (s-¢)
1 (s-a)

(s-aXs-b)s—-c) (s-b)

its least-order CTM can be shown as

[(s ~bY(s-cf (s-a)s-b)s—0)
G(s) = (s-¢) (s—a)'(s-c)
(s—a)s—-b)s— c)2
4. Related lemmas
Definition 2

Rosenbrock’s system zeros of a realization {4, B,C, D} for
given CTM are called the system zeros of the CTM.
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Lemma 1

System zeros of the G(s)s—g% can be calculated as the
s
solutions of the following equation.
A,(s)
—f=—==0 )
d(s)”

Here, A (s) is p — th minor of N(s) that is divisible by
d(s)°™. p=rank G(s).
<Proof> Obvious from the proof of Theorem 1.

Lemma 2
Inverse matrix of a regular polynomial matrix L(s)

satisfies condition 2 of Theorem 1 where det L(s) is d(s).
Furthermore, when L(s) is row (column) proper, the

L(s)"‘ also satisfies condition 1 of Theorem 1, then it
becomes a CTM with det L(s) as its common denominator.
Here, without loss of generality, let det L(s) be a monic
polynomial.

<Proof>
An L(s) can be transformed to Smith canonical form with

adequate unimodular matrix U,(s),U,(s) as

S(s)=U,(s)- L(5)-U,(s)

8
=diag(u,(s)) ;i=12,---,m ®)

where m is size of L(s). Inverse matrix of S(s) can be
calculated as

det L(s)

4,(5)
det L(s)

diag( )

S(s)' = )]

m
Because of H H;(s) =det L(s) , it is obvious that

i=1

S(s)”"' becomes CTM with detL(s) as its common
denominator. The L(s)"l also satisfy the condition 2 of
Theorem 1, since L(s)™ =U,(s)-S(s)™ -U,(s) and the

condition 2 holds even though multiplied by unimodular
matrices. Moreover, if L(s) is row (column) proper, the

L(s)™" becomes proper rational matrix then it also satisfies
condition 1 of Theorem . =

Lemma3

N(@s) . N(x)
Suppose a CTM: G(s) = satisfies det( y=0,
d(e0)
then G(s)™' is also CTM and system zeros of G(s) is
system poles of G(s)™.
<Proof>

The proof is obvious in case m=1. When m =22, G(s)_1
can be derived as

_ adjG(s)
det G(s)
_adjN(s)/d(s)"
det N(s)/d(s)"™
Using the proofs of Theorem 1 and Lemma 1, we find

that both adjiN(s)/ d(s)™ > and det N(s)/ d(s)""' become
polynomials after cancellations. By assumption of the

G(s)™
(10

theorem, we see that all elements in G(s)_l is proper. By
adjN(s)

is a CTM and then,
det N(s)

Lemma 2, we recognize that

adiN(s)/ d(s)""
det N(s)/ d(s)"™
All these things make it clear that G(s)"l can be expressed

by CTM with system zeros of G(s) : det N(s)/ d(s)™" as
its common denominator. m

satisfies the condition 2 of Theorem 1.

5. Conclusion

Realizable class of characteristic transfer function matrices
(CTM) has been discussed. Necessary and sufficient
conditions, related corollary and lemmas were shown.

These results add new information to transfer function
expression from novel point of view, and also provide ways
for calculation of system zeros, inverse polynomial
matrices. Furthermore, they will form the foundation for the
control system design with fixed order controllers.
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