FPGA Implementation of RSA Public-Key
Cryptographic Coprocessor for Restricted System

Mooseop Kim Yongje Choi and Howon Kim
Electronics and Telecommunications Research Institute
161 Gajeong-Dong, Yuseong-Gu, Daejeon, 305-350, KOREA
e-mail : {gomskim, yjchoi , hwk}@etri.re kr

Abstract : In this paper, the hardware implementation of
the RSA public-key cryptographic algorithm is presented.
The RSA cryptographic algorithm is depends on the
computation of repeated modular exponentials. The
Montgomery algorithm is used and modified to reduce
hardware resources and to achieve reasonable operating
speed for smart card. An efficient architecture for modular
multiplications based on the array multiplier is proposed.
We have implemented a 1024bit RSA cryptographic
processor based on proposed scheme in IESA system
developed for smart card emulating system. As a result, it is
shown that proposed architecture contributes to small area
and reasonable speed for smart cards.

1. Introduction

As the use of computer and Internet service becomes a
more pervasive part of our daily life, the concern with
security problems has become growing for recent years.

The same size as a credit card, a smart card stores and
processes information through its embedded system in the
card chip. From these higher security features than other
type cards, smart card is used in many applications such as
a telecommunicaton, and an access control, etc.

Public key cryptographic systems such as RSA are very
important to smart cards for an authentication, a private key
exchange, and a digital signature. The RSA is adopted in
Visa, Mastercard, and EMV smart card systems to
guarantee its security for credit card transactions such as
Secure Electronic Transactions(SET) protocol.

Modular exponentiation of long integers-often 512 or
1024-bits long-is the critical operation for a variety of the
most widely accepted cryptosystems. The operation for
RSA encryption and decryption are ¢ = X mod m. where X,
e, m, and c¢ stand for the message to be encrypted or
decrypted, the encryption(decryption) key, the modular and
the encrypted(decrypted) message respectively. For security
concern, the length of x, ¢ and m are 512~2048 bits, which
makes RSA operations intensive. However, the large bit
over 1024-bit modular operation makes the RSA system
difficult to implement in hardware.

The common ingredients of RSA processor such as long
registers, shift registers and adders are expensive in
hardware area and power consumption.

Over the past few decades, a considerable number of
studies have been conducted on the efficient hardware

design of RSA processor[2, 6]. But, many of those studies
focused on the decrease of operating time for faster system
performance. There are many factors to be considered for a
cryptographic hardware design such as cost, area and
performance etc. The main issues to design of a
cryptographic circuit for smart card system are trade-offs
between a feasible speed and a small chip area.

We have studied the method of reducing the chip size for
practical hardware implementation and that of achieving
reasonable operating time for smart card’s data transaction.
The proposed arhitecture is implemeted in Xilinx Vertex
series FPGA in TESA system developed for smart card
emulating.

In section 2, we analyzed the Montgomery algorithm and
modified it to make the hardware arcitecture simple. We
proposed an efficient hardware architecture for modified
algorithm in section 3. An implementation of RSA
processor above IESA system is described in section 4.
Finally, we analyze the performance of the 1024-bit RSA
processor implemented by proposed architecture.

2. Modified Algorithm
There are many algorithms to compute modular
reduction of 4B to AB mod M. The naive method to
compute modular multiplication is to perform a
multiplication of two numbers and then divide with M. This
method is inadequate for smart card, because it needs large
memory area to save partial products.

Algorithm 1. Moatgomery modular multiplication

Inputs :m = (my_y...myumg)p, x = (1. . X1Xg)p
Y= Gnt--Yiyo)s x= 0, m >y, R=b",
ged(m, b)=1,m '=-m” mod b
Stepl:4=20
Step2:fori=0ton-1
u; = (ag+xygm’ mod b
A=(A+xy+um)b
end loop
Step 3 :if A >m then return A-m
else return A
Output :xyR”’ mod m

The P. L. Montgomery[1] suggested as follows ; instead
of computing the complete product of two operand at once,

ITC-CSCC 2002



it might be more efficient using interleaving the addition of
a;B with modular reduction. By doing so, this method saves
the partial products without overflow.

The Montgomery’s modular multiplication algorithm, given
in Algorithm 1, is one of the most widely used to increase
the performance of modular arithmetic.

Where x, y and m are nbit numbers. Generally, thlS
algorithm is used in radix-2 because of its simple hardware
implementation. But, this algorithm still has a critic
problem to be used in a smart card system.

The algorithm 1 needs n iterations in each modular
multiplication and requires two additions per iteration.
These additions over a long integer cause the use of a large
bit registers. So it is necessary to modify Montgomery’s
algorithm for an efficient smart card system.

2.1. Modified Modular Multiplication

The long bit data addition in each iteration is an
expensive in terms of hardware area and power
consumption. As an alternative approach, we revised
algorithm 1 such that only 32-bit data multiplication and
addition are required in each iteration for more efficient
design of smart card. :

A state diagram for the modified algorithm using this
idea is shown in Figure 1.

e ]

S3. Calculate
ul
R i stilylil+ ufilmg]
N Y
2
§7. Cheek _ $5. Load
recursion >32 se . temporal vaiue
Y
—i
S8. "::dMSW $9. Check SI10.Check ) | S1.Load
Sub ¢fi] - mii] MSW=1 sub_carry = 0 temp vatue to mem

Ly

Figure 1. The state diagram for modified multiplication

Instead using a long bit data arithmetic, all arithmetic
operations are reduced to 32-bit multiplications, additions,
subtractions and binary shifts.

The modified algorithm’s core operating routine, the
modification of step 2 in the algorithm 1, is shown in
algorithm 2. In this algorithm, only 32-bit data
multiplications and addtions are required in each iteration.
The number of iteration, however, is increased up to 32
times maximum that of original algorithm. But the overall
computation time of the iteration is reduced to a reasonale
time by using faster clock and using an efficient controller
circuit.

Algorithm 2. Modified modular multiplication

fori=0ton-1loop
(C1. §) =xyptap
(Rt;,R)=m’S
(C2 8) = mR,+S
forj=1ton-1loop
(C), §) = ayjta;+C;
(C2 §) = miR,+§+C)
aj.; = S
end loop j
Ry, §) = C1+C;
Rt S) =a,+S
Ant =S
(Rt2, Ry = an. +R,
(Rt1, Ry) = Rt;+R,
an=Rp
end loop i

The advantage of this algorithm is that all the operations
are reduced in 32-bit data range, hence, it leads to simpler
architecture and, thus, smaller chip area.

2.2. Modified Modular Exponentiation

In RSA cryptographic algorithm a message X is encoded
by computing X* mod M for some M and encryption key e.
Modular exponentiation is accomplished by repeated
modular multiplications. But a RSA cryptographic circuit
based on Montgomery modular multiplication needs two
extra operations to perform a modular exponentiation.

According to Montgomery’s theorem({1, 2}, input data X
is converted to montgomery residue class type Xr mod M.
From this converting, the output of modular exponentiation
becomes X°r mod M Another modular multiplication of
Mont(X°r mod M, 1) perfo rmed to remove the extra factor r
for correct output. Finally the last output result is the
desired form X° mod M.

Algorithm 3 : Modified Exponentiation
Inputs : m = (m,_;...mymy),, R=r, m’=-m" modr,
e = (e,...e;eQ) ; with e, = I and a message x,
15x m
Step 1 : xp =xR mod m, A = R mod m.
Step 2 : fori=tdownto0
A = Mont(4, 4).
ife; = 1 then A = Mont(4, xp).
elseA=A.
end loop
Step 3: 4 = Mont(4, 1).
Step 4 : return A.
Output :x° mod m

3. Modular Multiplier Architecture

ITC-CSCC 2002



The designed modular multiplier performs the modular
reduction operation by computing Montgomery modular
multiplication. In hardware implementation, every step in
Montgomery algorithm is designed by 32-bit multiplication,
binary shift and addition.

The critical issue in design of modular multiplier is the
design of 3232 multiplier. A 3232 bit multiplier is too
large for smart card system. Furthermore the delay may be
important and reduce the speed of whole RSA processor.
So we used repeated small multiplications to compute
whole 32-bit multiplication as most microprocessor
manufactures using in their processor.

To carry out 3232 bit multiplication, we used 32-bit by
8-bit array multiplier as shown in Figure 2[3, 4]. Although
this repeated multiplication takes 4 clock cycles for 32-bit
multiplication, we ould use the additive array multiplier
because it performs 32-bit multiplication and addition at the
same time.

Figure 2. The architecture of 32X8 bit array multiplier

This architecture reduces the complexity of hardware and
achieves small chip area which proper for smart card. This
simple architecture needs many clock cycles to perform
multiplication steps.

The architecture of additive multiplier, a core operation
module of Montgomery modular multiplication is shown in

Figure 3.

out_high

out jow
Figure 3. The architecture of 32-bit additive multiplier

For its reasonable performance, special care is needed to
design an efficient control circuit. The additive multiplier in
Figure 3 makes it possible to design simple modular
multiplier. Actually, the designed modular multiplier is
consists of only additive multiplier, some 32-bit registers
and control block.

4.Imple mentation of RSA processor

Modular exponentiation is executed in three steps; data
converting to a Montgomery residue class, exponentiation
and reconverting to original data class.

Figure 4 shows the architecture of the 1024-bit RSA
porcessor adopting the modified algorithm. The designed
RSA processor consists of interface, control register,
controller, several 32bit data registers, modular multiplier,
memory and output register.

First, each input data for RSA cryptograhic operation is
transferred through interface circuit and registered in
memory block by control circuit. During repeated
multiplication steps, the intermediate data should be stored
to memory in 1 clock cycle. But, the writing data to
memory and the reading data from memory in every
iteration steps cause many data transfer delay, hence, it
reduce the whole system performance. To settle this
difficulty and to increase operating speed, we use an
additional shift register to store intermediate data. After
reconverting step, the desired output data is stored in
memory and the controller sets the end operation bit in
control register.

~arm datr

~arm add! em_out
~—arm_comr r
™ SHa— ke load b
p | data reg's
1
mode_sel
en_con
«——imode_sel
on_in
rw_son «—{en_cont veg_seld
e=drwn_cont iwout_les
rwo_in
Controller
mac_o
arm_da
~addr_co
-addr_li

Figure 4. The architecture of RSA processor o

For its computational efficiency, we designed the RSA
processor could be used .to compute both a modular
multiplication and a modular exponentiation. The selection
of these operations is chosen by the setting value of mode
select bit of the control register.

The control register controls the operation of the RSA
processor. It also contains the sequential information of
exponent data used in encryption or decryption operation.

ITC-CSCC 2002



Table 1 shows the detailed bit information of control
register.

Table 1. Bit information of control register
Bit RSA processor operation

0 Operation start signal

Select the operation mode of processor

1 : exponentiation
x“modm

0 : multiplication
xy mod m

Select exponentiation mode

1 : decryption
x=c? modm

0 : encryption
c=x"modm

Initialize processor

4 {i End operation notification

To perform all these operation using 32-bit multiplier,
adder and shift register, we need an efficient control block.
The conirol block conirols all data inpuis and outputs of the
modular multiplier, a path selection signal, an interrupt
signal and a memory data access operations.

The designed RSA processor was implemented and
verified using IESA system developed for smart card
emu lating system. The IESA system mainly consists of
ARM?7 processor, interface circuit for smart card, smart
card operating system, memory block, and designed RSA
processor as shown in Figure 5.

Mmary
Block

Figure 5: Photograph of the Implementation system.

5. Performance Analysis

The RSA processor using proposed architecture is
designed by only use of 32-bit based elements. To control
all input and output data of modular multiplier, there are
some efficient control circuit. All elements are optimzed to
reduce the hardware resources and to meet smart card’s
reasonable operating time.

For its verification, the proposed architecture is designed
in 0.5 (m Hynix technology using Active-HDL and the
Synopsys FPGA Express is used as the logic synthesis tool.

A Xininx Vertex series FPGA chip is used for the
implementation of the RSA processor and the implement
results are summarized in the Table 2.

Table 2. The feature of the 1024bit RSA processor

Technology 0.5

Clock frequency 40 Mz
Synthesized gate counts 2.7k gate

Modular Multiplication (1024bit) 356 us

Encryption (16bit key) 6.4 ms

Decryption (1024bit key) 510ms
RAM usages < 4M bits

Because the smart card’s tolerable response time
according to a challnage signal is less than about 1 second,
the implementation results indicate that the designed RSA
processor is suitable for restricted system such as a smart
card.

6. Conclusion

We proposed an efficient design scheme to implement an
optimized 1024bit RSA cryptographic processor for
restricted system such as smart card. The modified
Montgomery algorithm made it possible to reduce circuit
area and to meet reasonable operating time for smart card.

As a result, The designed modular multiplier circuit
performs fast execution of modular multiplication and
exponentiation with small size. From its high performance
and small chip size, the designed RSA processor provides a
good solution to pratical implementation for various
security applications used in smart card or other stricted
systems.

References

1] P.L. Montgomery, “Modular Multiplication Without
Trial Division,” Mathemat. of Computat. , Vol. 44,
pp-512-521, April 1985.

[2] S. R. Dusse and B. S. Kaliski, Jr., “A Cryptographic
Library for the Motorola DSP56000,” Advances in
Cryptology — Eurocrypt 90, Lecture Notes in Computer
Science, No. 473, Springer-Verlag, New York, 1990, pp.
230 ~244.

[3] Kai Hwang, Computer Arithmetic, John Wiley, 1997.

[4] Behrooz Parhami, Computer Arithmetic, Oxford
University Press, 2000.

[5] Alfred J. Menezes, Paul C. van Qorschot, and Scott A.
Vanstone, Handbook of Applied Cryptography, CRC
Press, 1997.

[6] Stephen E. Eldridge and Colin D. Walter, “Hardware
Implementation of Montgomery’s Modular
Multiplication Algorithm,” IEEE Transactions On
Computers, Vol. 42, No. 6, June 1993, pp. 693 ~ 699.

ITC-CSCC 2002



