A Proposal of Programmable Logic Architecture for Reconfigurable Computing

Masahiro Iida!* and Toshinori Sueyoshi?
1Graduate School of Science and Technology, Kumamoto University
2Department of Computer Science, Faculty of Engineering
Kumamoto University, Kumamoto, Japan, E-mail: sueyoshi@cs.kumamoto-u.ac.jp

Abstract:

Reconfigurable computing is a new computing paradigm
which has more potential in terms of performance and flexi-
bility. Reconfigurable computing systems are opening a new
era in digital signal processing such as multimedia, com-
munication and consumer electronics because they can filter
data rapidly and excel at pattern recognition, image process-
ing and encryption. Although many reconfigurable comput-
ing systems use a conventional programmable device, they
carry several serious problems to be solved. This paper pro-
poses a logic block architecture of programmable device suit-
able for the reconfigurable computing. Compared to conven-
tional logic blocks, our logic block can improve implemen-
tation density, efficiency and speed.

1. Introduction

Programmable logic devices have produced a new com-
puting paradigm, which is called reconfigurable computing,
because they have given the flexibility of hardware to ap-
plications. A system that uses the reconfigurable comput-
ing technology obtain not only flexibility, but also high per-
formance and low power consumption. However, a serious
problem for reconfigurable computing is that conventional
FPGAs reconfigure slowly and do not have enough logic ca-
pacity. Consequently, it has been necessary to develop a new
device accordingly.

In this paper, we focus on the programmable logic archi-
tecture, and we propose a novel logic block. Our logic block
contains configuration data cache for holding muitiple con-
texts and the high functional LUT (Look Up Table) that have
the functions of multi-context and clustering. The context is
a unit of configuration data for circuits. The rest of the paper
is organized as follows: Section 2 presents the novel recon-
figurable logic architecture we proposed. Section 3 details
our experimental approach, and gives the evaluation models
and the benchmark circuits. Section 4 discusses the effect of
our logic architecture. Finally, we conclude in Section 5.

2. Proposal of reconfigurable logic architecture
2.1 Basic logic block architecture

Fig.1 depicts the architectural model of our logic block,
which is a kind of the fine grained reconfigurable logic. Our
logic block has configuration data cache (short for CDC)
with LUT which realizes both the structure of a multi-context
and multi-grain (short for MCMG-LUT) with clustering of
LUTs.

This LUT has six constructive modes ((a)-(f)). The first
three modes (a)-(c) are clustered LUTs. The latter three
modes (d)-(f) are configured as multi-context and multi-grain
LUTs. These modes are determined by each LUT. The CDC

*Presently, with Mitsubishi Electric Engineering Co., Ltd.

is the memory that holds more than one set of context data
and mode bits for the MCMG-LUT, and even if LUT is work-
ing, the CDC can be rewritten by the data line only itself. The
proposed logic block exploits these modes, hold promising
the following effects; (1)Improving implementation density
by the CDC, (2)Improving implementation efficiency by the
clustered LUT, and (3) Reducing implementation area by the
multi-context LUT.

Logic Block
_’
- MCMG @.
> :
.2 Lot :
< STk
3l Fr U
il 1 Configuration ~*~ .
[=»{ Data Cache (CDC) | "}~ _

= “
lﬂl Track Area] \\\

," Six kinds of configuration modes of 6-input 3-output Ll}f*\
(a) Three 2-LUTs | (b) Two 3-LUTs {¢) One 6-LUT

o+ | =g 1

(d) 3-LUT x 8 planes){e) 4-LUT x 4 planes |{f) 5-LUT x 2 planes

L}

ior ALUT
- s
__>)\’ 5-LUT
l 8 planes 4 planes 2 planes

Figure 1. Logic block architecture for RC,

3. Experimental Methodology

In this section, we present a brief description of the area,
delay and implementation efficiency modeling, and we de-
fine the implementation efficiency. Moreover, we describe
benchmark circuits and evaluation flow. The area model[1]
and delay model[2] was proposed by Rose et al. of Univer-
sity of Toronto and we modified part of this model for the
architecture we propose.

3.1 Area Model

Area model is a simple model, consisting of the individual
logic block with vertical and horizontal routing tracks that
Fig.2 depicts it. It doesn’t have a hierarchical routing struc-
ture. The number of the tracks of each routing channel (W)
is given by,

W = axK+b,)
where, K is the number of inputs to the LUT, a is the ratio
coeflicient of K and & is the number of fixed wires such as

ITC-CSCC 2002

" W Tracks

I
Fixed Area (FA)
Logic Block FMA J"l-CMA

\ w? xBA“ WVBAX2* + FABA
Figure 2. Area Model.

N

W«/’EI{:

clock signals, a reset signal and global wires. The width of
each track is the square root of the bit area (BA), moreover, a
logic block is assumed a square. A unit area in the evaluation
model is the sum of the area of routing tracks that it join it
with the logic block and the area of logic block. It can be
expressed by following equations:

Area = (W?xBA+2WVBAx 2K + FAVBA)+
(B4 x 2% 4 F4), @)
FA = FMA+CM4, @
CMA = BNxBA4+CLA. @

£A4 means the total area of the fixed domain in the logic
block, and is broken down into FMA and CMA. FMA is
the area of the fixed area such as FF , and CM4 is the area
for the CDC. Following, CLA is the area of control logic for
MCMG-LUT, and BN is the number of bits for the CDC. A
conventional FPGA is the same as when the area for the CMA
equals zero.

We implement some benchmark circuits to our reconfig-
urable logic, and count the necessary number of logic blocks.
Then we calculate a total area with the following equation:

Total Area = (# of LBs) x (Unit area of one LB).)

The area of a logic block is estimated using the Equation
(2), and as we adopt 1.25um CMOS process[1], we use the
following parameters; BA is 400um?, FMA is 5,100um?,
CLA is 2,250um?, a is 1.0, and b is 12. We assume that
CLA is 2,250um?, because a breakdown of the total area
of CLA includes three bits for mode changing (1,200um? =
BA x 3) and the control logic (1,050um?). When we use
these parameters, the area of a conventional logic block for
4-LUT(Areas) becomes 182, 532um?.

3.2 Delay Model

Delay model is shown in Fig.3, and we break down the
routing delay (DR) into the sum of wiring delays (DW) and
the sum of connection delays (DC). Then, DL is the logic
block delay. N is the number of logic blocks between FFs on
a critical path, and D is the total delay.

Searching for the number of logic blocks on the critical
path of each benchmark circuit, the maximum delay can be
approximated by the following equations:

DR
D

Z(DW)+XDC), ©)
(DR+DL)x N. M

In case of the routing structure not being clear, D and
DC are defined by,

$(DW)
=(DC)

DR xRy, ®)
DR x (1-Ry), ®

/]

Connection Block

Logic Block . Logic Block Logic Block
PPV R N B D__.{
Wire Delgy: DW, Ci ion Delsy: DC LUT Detay: DL
(il , |
Av ing Delay: DR

Total Delay: D

— J
Y
LUT steps: N

Figure 3. Delay Model.

where, R; denotes the delay coefficient when distributing the
total routing delay to DW and DC.

We estimate the delay of the evaluation circuits by using
Equation (10) and Equation (11). The ratio of the area of the
logic block is given by

ARg/e = VLB Areaof 6—LUT
/4= JLB Areaof 4 —LUT

Moreover the delay that includes routing delay for the CDC
as a product of an area ratio and the routing delay by 4-LUT
can be estimated by the following equation:

1o

DRg = ARgj4 X DRy x Ry+DRa % (1— Ry).)

where, DRy denotes the routing delay of 4-LUT, and R, is
the wire-connection delay distribution coefficient. Each area
uses the same values as mentioned above. As we adopte
1.25pum CMOS process, we use the following parameters[2];
DL4is 1.71ns, DLg is 2.38ns, DR4 is 4.0ns, and Ry is 0.1. We
assume that the logic block delay of MCMG-LUT increased
about 10 % more than the delay of a conventional 6-LUT as a
rough estimate. The delay of MCMG-LUT(DL,¢) is 2.62ns
accordingly. In this paper, we use this value for the evalua-
tion of delay.

3.3 Implementation Efficiency Model

In implementing circuits into logic blocks, the amount of
occupation bits (O-bits) and the amount of employment bits
(E-bits) are defined by the following equations:

O — bits = (# of logic blocks) x 2K, (12)

K
E —bits =Y, ((# of n— inputs logic blocks) x 2™). (13)

n=1
As aresult, the implementation efficiency is obtained by

(E ~ bits)
(©O=pits) *

Implementation ef ficiency = 100. (14)

3.4 Benchmark Circuits

The selection of the benchmark circuit is a very impor-
tant problem. In this paper, we used the experimental cir-
cuits that are a selection of 10 logic synthesis benchmarks
(alud, ex1010, apex2, ex5p, des, frisc, dsip, seq, elliptic, and
tseng) provided by Microelectronics Center of North Car-
olina (MCNC)[6] and six additional benchmark circuits. Ta-
ble 1 shows our additional benchmark circuits. All additional
circuits are designed with Verilog-HDL.

ITC-CSCC 2002

Table 1. Additional benchmark circuits.
Circuit | Description
ACS4 | ACS Circuit of the Viterbt decoding
DIV8 | Piplined Divider
FFT6 | 8 points FFT
DES 16 looped DES
"MASI | Multiply Accumulate operator
SCU DLX processor(Instruction Decoder)

Figure 4. Architecture Evaluation Flow.

3.5 Architecture Evaluation Flow

Implementation flow from source codes of Verilog-HDL
to netlists is shown in the Fig.4. We got EDIF netlists
by using MAX+PLUS 1I of the ALTERA from the bench-
mark circuit described with Verilog-HDL, and translated it
into the BLIF format by using EDIF2BLIF [3] developed at
the U.Toronto. Then, the BLIF netlists were mapped using
SIS{4] of UCB from a 3-inputs-LUT to a 7-inputs-LUT, and
it wase packed using TV-Pack{5] from U.Toronto, and finally
got the netlists after the technology mapping.

4. Experimental results and discussions
4.1 Number of inputs on logic block

We examine the number of the input signals. Table 2
shows the rate of the input signals in benchmark circuits.
The bold type is the rate of LUT mapped to the number of
the maximum input of each LUT. The rate decreases as K
increases. This means that there is surely an LUT for which
the number of inputs is few even if the LUT granularity is
enlarged, though this depends on the mapping algorithm.

4.2 Effect of the Configuration Data Cache

We implement the circuits to our logic block with mode
(¢) in order to evaluate the effect of the CDC.

The area of our logic block within CDC becomes larger
than the area of 4-LUT. Accordingly, a wire delay becomes
larger because the wire length between the logic blocks in-
creases. A logic block delay becomes larger because our
LUT is regarded as a 6-LUT too. However, the number of
logic block stages on the critical path, which is the parameter

Table 2. Rate of various inputs actually used in each LUT.

LUT Granulanty
Inputs
3-LUT 4-LUT 5-LUT 6-LUT 7-LUT
1 input 0.91 1.11 147 0.08 0.90
2 inputs 17.59 13.38 7.59 9.21 6.55
3inputs { 81.50 22.58 19.87 7.23 8.12
4 inputs - 62.94 24.07 16.16 18.19
5 inputs - - 47.01 25.62 12.29
6 inputs - - - 41.70 17.96
7 inputs - - - - 3598
A unit is %,
120 1 800
O Criticalpath Delay Ratic p
115 =@—Implementation Density Ratio 1. 5.00
3
K-
5 110 400 £
§ 1.05 2
£ 3.00 ‘g
1.00 %
§ 095 | 200 %
’ g
090 1.00
0.85 . L . L . . : 000

0 84 128 256 512 1,024 2,048 4,096 8,192
of bits in CDC (bit)

Figure 5. Implementation density and critical pafh delay.

N, decreases to change 4-LUT to 6-LUT. There is a trade off
in these relations.

Fig.S shows the implementation density and the critical
path delay versus the number of bits in the CDC. They are the
ratio of our logic block to a conventional 4-LUT logic block.
The CDC does not increase only the implementation density,
but also the critical path delay. However, from this graph,
in the range between about 180 bits and about 1,600 bits in
the CDC, our logic block is faster than a 4-LUT logic block
and improves the implementation density. For instance, in
the case of the CDC, 1,024 bits, the implementation density
produces up to 2.52 times more than a 4-LUT logic block.

4.3 Effect of LUT Clustering

Our logic block can be clustered as three 2-LUTs (mode
(a)) or two 3-LUTs (mode (b)). The LUT actual inputs are
below the maximum inputs of LUT exist in some degree as
shown in Table 2. For example, in the case of a 6-LUT, about
9.21% of the LUTs use only two inputs and 7.23% of the
LUTSs use only three inputs. It is very probable that LUT
clustering reduces the number of LUTs actually being used.

Fig.6 shows the results from implemented benchmark cir-
cuits from 3-LUT to 7-LUT and our n6-LUT!. An implemen-
tation to n6-LUT is an ideal case. The normalized area shows
the relative value against the minimum area. The normalized
area of our n6-LUT approaches the minimum area. The im-
plementation efficiency is improved 6% from a 6-LUT and
became the level of a 5-LUT.

IMCMG-LUT which used the mode (a) and the mode (b) is called n6-LUT
in order to distinguish from the conventional 6-LUT.

ITC-CSCC 2002

e 1,45

e Implementation efficiency |

v %00 | 89.3 |~@— Normalized Area ”\ 1 140
& : / 1136
£ /7]
| 800 / \ 1 130 E
= 1125 %
SR 700 g
i {120 g
-

.0 {115 §
E 60. 15 5
T 0 4 110
E - { 108

100

n6LUT

3LUT 4LUT SLUT 6LUT 7LUT
LUT granularity

Figure 6. Normalized area and implementation efficiency.

4.4 Effect of Multi-context and Multi-grain LUT

In this paragraph, we consider the effect of multi-context
and multi-grain mode. In the case of modes (d)-(f), there is
the assumption that it doesn’t activate at the same time in
each context of LUT. Therefore, it can’t be assured through
a usual mapping method. In this evaluation, we adopt the
mapping method shown in Fig.7. In this way, the indepen-
dent block is implemented in another context, the indepen-
dent block means the operation doesn’t activate at the same
time by Verilog-HDL syntax, such as the “case” sentence or
the “if”” sentence.

if 0 case O
Operation A 0: Operation A .
else if 0 1: Operation B Toput Output
Operation B 2: Operation C ‘ Context
elss if O 3: Operation D Switch
Operation C endcase
slse
Operation D

Figure 7. Mapping method for Mutti-context LUT.

The ALUI16 circuit of 8 operations and 16 bits precision,
shows in the Fig.8, is used as the evaluation circuit. This
circuit is implemented to a 7-LUT from a 3-LUT using con-
ventional FPGAs, our 3-LUT with eight contexts (mode (d))
and our 4-LUT with four contexts (mode (e)). Each opera-
tion of ALU16 is implemented to our logic block by the flow
of Fig.4, and we get a final netlist by being unified by the
manual operation. The whole of ALU16 is implemented to
the conventional LUT in accordance with Fig.4.

p AND
¢ XOR

Iz
U

A

1o

3 NE
1' GT

7 SHIFT

C

Figure 8. Structure of ALU16.

Fig.9 shows the relative area ratio of a benchmark cir-
cuit that we implement in five kinds of conventional LUTs
and our two multi~context LUTs. Our multi-context LUT,

in which the modes are eight 3-LUTs (mode (d)) and four
4-LUTs (mode (e), doesn’t include the CDC in this evalua-
tion. As a result, the mode (d) shows the minimum area. It

. turns out that the area using mode (d) is about 87% of the

implementation area using the conventional 4-LUT.

18

Relative area ratio

3LUT 4LUT SLUT 6LUT TLUT 4LUT*4 3LUT'S

LUT Granularity

Figure 9. Area compérison of ALU16.

5. Conclusions and Future works

In this paper, we proposed a new architecture of logic
block for the fine grained reconfigurable platforms that have
configuration data cache for holding muitiple contexts and
the LUT that has the functions of multi-context and clus-
tering. Compared to conventional logic blocks, our logic
block improved the implementation density, the implementa-
tion efficiency and the implementation area, with the conse-
quence that it brings more flexibility and high performance in
the programmable device. We expect that the reconfigurable
computing using our logic block architecture will become a
key technology in the future multimedia systems or commu-
nication systems.

This research proposed and estimated the suitable logic
block for RC. However, with the present CAE tool, it can-
not implement in this logic block. Therefore, it is necessary
to examine a CAE tool that can utilize this logic block ef-
fectively from now on. Moreover, details, such as how to
replace configuration data and routing structure, are also due
to be examined.

References

[1] J.Rose, R.Francis, D.Lewis : “Architecture of Field-
Programmable Gate Arrays : The Effect of Logic Block
Function on Area Efficiency,” IEEE J.Solid-State Cir-
cuits, Vol.25, No.5, pp.1217-1225, 1992.

[2] J.Rose and S.Brown : “The Effect of Logic Block Ar-
chitecture on FPGA Performance”, IEEE J.Solid-State
Circuits, Vol.27, No.3, pp.281-287, 1992.

[3] P. Leventis : “Using edif2blif Version 1.0 (Draft),” 1998.
http://www.eecg.toronto.edu/ jayar/software/software.html

[4] E.M. Sentovich, et al. : “SIS:A System for Sequential
Circuit Synthsis,” Memorandom No. UCB / ERL
M92/41, 1992.

http://www-cad.eecs.berkeley.edu:80/Software/software.html

[5] A. Marquardt, et al. : “Using Cluster-Based Logic
Blocks and Timing-Driven Packing to Improve FPGA
Speed and Density,” ACM/SIGDA FPGA 99, 1999.
http://www.eecg.toronto.edu/jayar/software/software.html

[6] S. Yang : “Logic Synthesis and Optimization Bench-
marks, Version 3.0,” Tech. Report, Microelectronics
Centre of North Carolina, 1991.

ITC-CSCC 2002

