Aspect feature extraction of an object using NMF

  • JOGUCHI, Hirofumi (Department of Information & Computer Sciences, Saitama University) ;
  • TANAKA, Masaru (Department of Information & Computer Sciences, Saitama University)
  • Published : 2002.07.01

Abstract

When we see an object, we usually can say what it is easily even for the case where the object isn't shown in the frontal view. However, it is difficult to believe that all views of every object we have ever seen are fully memorized in our brain. Possibly, when an object is shown, we have some typical views of the object in our brain through our past experience and reconstruct the view to recognize what the presented object is. Non-negative Matrix Factorization (NMF) is one of the methods to extract the basis images from sample data set. The prominent feature of this method is that the reconstructed image is obtained by only additions of the basis images with suitable positive weights. So NMF can be seen more biologically plausible method than any other feature extraction methods such as Vector Quantization (VQ) and principal Component Analysis (PCA). In this paper, we adopt NMF to extract the aspect features from the set of images, which consists of various views of a given object. Some experiments are shown how much well NMF can extract the aspect features than any other methods such as VQ and PCA.

Keywords