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" Abstract: The fixed points of two known gradient flows
defined on adjoint orbits of orthogonal groups are ana-
lyzed through the critical point analysis of the potential
functions. The results show that some known proper-
ties of these gradient flows are shared with the gradient
flows of the same potential functions with respect to
other metrics.

1. Introduction

Over the past decade, several attempts have been
made on solving matrix optimization problem appeared
in some aspects of engineering using continuous matrix
dynamical systems, especially matrix gradient flows[9].
Such matrix optimization problem include eigenvalue
decomposition (EVD), independent component analysis
(ICA), blind source separation (BSS) and joint approxi-
mate diagonalization (JAD). Comparing to other kinds
of numerical methods, the approach using continuous
dynamical system is suitable for adaptive applications,
such as signal processing methods for tracking moving
targets.

The most of dynamical systems associated with the
eigenvalue decomposition of real symmetric matrices or
complex Hermitian matrices are defined on the orthogo-
nal group or the unitary group. For example, Brockett’s
flow which solve eigenvalue decomposition of real sym-
metric matrices can be regarded as a dynamical system
on the orthogonal group. ICA problem for prewhitened
observed data is to find orthogonal demixing matrix
which maximize the independence between channels.
Therefore the matrix dynamical systems for ICA are
defined on the orthogonal group.

The aim of present work is to analyze the fixed points
of gradient flows defined on orthogonal groups through
the critical point analysis of the potential functions, us-
ing local coordinate systems defined by plane rotations.
The fixed points are classified according to the index
numbers which represent the stabilities of the dynamics
around the points.

2. Fixed Point Analysis

In this section, we analyze the fixed points of two gra-
dient flows defined on the adjoint orbit of the orthogonal
- group SO(n),

Q= {G ' AG |G € SO(n)}.
The gradient equation of the potential function

$(4) = $(G* 4G)

restricted on the adjoint orbit  is given as
; 9¢(A)
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where [A, B]| = AB—BA is a commutator product and 7
means projection to the space of skew-symmetric matri-
ces. It is known that the right hand side of (1) vanishes

if and only if
9¢(4)

W[At,(*a—)] =0

holds. (See [1][5].) The solution of (1) evolves inside
the adjoint orbit 2 and A(¢) at each time point ¢ is
orthogonally similar to the initial value A(0) = Ao.

We analyze the fixed points of gradient flows on the
adjoint orbit using the following coordinate systems. Let
E;; denote an n x n matrix whose (i, j)-th element is 1
and all the other elements are 0’s and put

Xij = Eji - E," (’L < ])

Then a plane rotation is expressed as an exponential of
Xij)

(1 \
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We introduce a local coordinate system
0 = (012,613, ... ,01n,023,... ,02n,... ,05_110)
on SO(n) around the identity by
GO =

PLEERSTIN 913 Xs eomxm
913 X2s | oBnXan

,eaﬂ~1,nxn—l,n

and on the adjoint orbit {2 around Aq by
A(8) = G(6) "1 40 G(6).

Then the first order and second order derivatives on the
adjoint orbit Q at Ag is calculated as

3i;A(6)le=0 = [Ao, Xij},
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00kt A(0)|o=0 = [[Ao, Xij], Xl
where 8;; denotes the differentiation with respect to 6;;,

-9
- 30,;3' )

Note that the order of X;; and Xj; in the right hand
side of the second order derivative is the same as the
order appeared in the definition of G(8) and does not
depend on the order of differentiation. We introduce
local coordinates systems around arbitrary points A on
the adjoint orbit © through the left action of the group,
in which we have

0i;A = [A, Xij),
00 A = [[A, X5}, Xri)-

2.1 Brockett’s equation

Let N = diag(ny,ns,...,ny) be a fixed real diago-
nal matrix with distinct diagonal elements, the potential
function be defined as

$1(4) = — anam’

where a;; denotes the (i, j)-th element of A and the ini-
tial value A(0) be a real symmetric matrix with distinct
eigenvalues in (1). Then we obtain

A=[A,[A N]. (2)

This dynamical system was introduced by Brockett[4].
(Note that the projection to the space of skew symmetric
matrices 7 can be omitted in (2) because [A, N] is skew
symmetric for Vt.)

We first re-derive basic properties of the dynamical
system on its fixed points and their stabilities directly
from the critical point analysis of the potential func-
tion. After that, we derive our result on the number
of the fixed point with each index number (degree of
instability).

The critical points of the potential function ¢;(A)
satisfy

3,'j¢1(A) = - an Bijapp =0 (2 < 7).
P

Using
95A = [A X
aij —a14
Q2j —agq
Qnj —Qni
~aj1  —aj2 —Qjn
;) aig - Gin

and the symmetry of A, we obtain
—-2(77,;‘ - nj)a,-]- =0 (Z < ])

Because n;’s are distinct, it follows that all the critical
points of the potential function ¢;(A), which are the
fixed points of (2), are diagonal matrices whose diagonal
elements are the eigenvalues of the initial matrix A(0).
Then the number of the fixed points of (2) is n! if the
eigenvalues of the initial matrix A(0) are distinct.

The Hessian of the potential function

Bi501(4) = = D _ 1y i300pp
p

at a critical point A = diag(Ai,... , Ar) is calculated as

{ 2\ — )\j())(ni -n;) (i=k,j=1)

(otherwise)
using
90 A = [[A, Xi5], Xui]
=2(Xi = X)) (B — Ej;) (i=k,j=1)
M= MUEG+Ey) (i=kj#l)
= —(Ai =N B +Eri) (P#kj=1)
(i — )\j)(Eil + Eu) (k =7,1< l)
0 {otherwise)

The obtained Hessian is already diagonalized and its
n(n — 1)/2 diagonal elements are given as

2(hi = Aj)(mi —ng) (i <j)
A critical point is a stable fixed point of (2) if all the
diagonal elements of the Hessian at the critical point are
positive when it is diagonalized, which is satisfied when
Ai’s and n;’s are similarly ordered. Therefore, exactly
one among n! diagonal matrices is stable fixed point of
(2). :

The number of the negative diagonal elements of the
Hessian at a critical point when it is diagonalized is the
index number which indicates the degree of instability
of the fixed point. The following theorem is the basis of
our result on the number of the fixed point of (2) with
each index number.

Theorem 1. Assume that A;’s are in ascending order,
A1 < Az € --- < Ap. Let C,(c”) denote the number of
the permutations on {1,2,... ,n} for which there are &
index pairs (¢,7) with i < j and Ar¢) > Ax(;), where
7 denotes the permutation. Then the polynomial of ¢
whose k-th coefficient is C,(c") is given as,

n(n-1)/2 n—1 i
Y oePe=1113Y]- 3)
k=0 =1 \j=0

Proof. We prove by induction.
i) For the case of n = 2, obviously we have Céz) =1and
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C® =1 then the polynomial is 1+ ¢. This shows that
(3) holds for n = 2.

ii) We assume that (3) holds for A\; < --- < Ap-1 and
the permutations on {1,... ,n — 1}, and prove that (3)
holds also for A; < -+ < A, and the permutations on
{1,...,n}. There are n positions to insert the largest
value Ap t0 Ar(1),- -+ » An(n—1)- Inserting An to the right
end causes nothing on the numbers of the index pairs
with reversed order. Inserting ), between A,(,_;) and
An(n—2) adds 1 to the numbers of the index pairs with
reversed order. From these observations, we see that the
right hand side of (3) for n is obtained by multiplying
the right hand side forn ~1by (1 +t+---+¢*"1). B

Using the above theorem, the number of the fixed
points of (2) whose index number is k, denoted by Cj,
can be obtained by differentiation or straightforward
calculation of the polynomial of t. For example, the
polynomial for n = 4 is calculated as

1+t +t+2) A+t +2+1¢%)
=1+ 3t + 5t + 6% + 5t* + 3t° +¢°

which yields Co =1, C; =3,C2 =5, C3 =6, Cy =5,
C5 = 3 and Cg = 1. Substituting ¢ = 1 in the right hand
side of (3) gives the total number of the permutations on
{1,2,...,n}. Itis easy to see that C’s remain the same
for the case that n;’s are not in ascending order, as long
as both n;’s and \;'s have distinct values respectively.

2.2 Gradient equation of off-diagonals
Let the potential function defined as

$2(A) =off(4) = D ai

1<i#j<n

and the initial value A(0) be a real symmetric matrix
with distinct eigenvalues in (1). Then we obtain

A = [A,[A, diag(4)]] (4)

This dynamical system was studied by Faybusovich[7]
and Nakamura[8]. (The projection operator 7 can be
omitted because [4, diag(A)] is skew symmetric for ¥¢.)
It is shown that the solution of (4) converges to a diago-
nal matrix whose diagonal elements are the eigenvalues
of the initial value A(0), for almost all initial values.

We first identify the fixed points of the dynamical sys-
tem through the critical point analysis of the potential
function and then examine the properties of the fixed
points.

We note that the gradient equation of the potential
function ¢5(A) is equivalent to the gradient equation of
the following potential function

b2(4) = =D am’

since the squared sum of all the elements of A is invari-
ant under similar transformation by orthogonal matri-
ces. The critical points of the potential function ¢;(A)

satisfy
8i;62(A) = -2 appBijapy (i <J)-

p .

From this, using
9i; A = [A, Xij]
and the symmetry of A, we obtain
—4(ai,- - ajj)a,-j =0 (7, < j)

It follows that all the critical points of the potential func-
tion ¢(A), which are the fixed points of the dynamical
system (4), satisfy a;; = 0 or a; = a;; for i < j.
From the above observation, the fixed points of (4)
are classified into the following four categories :
1. a diagonal matrix
2. a matrix whose diagonal elements are all equal
3. a block diagonal matrix whose diagonal blocks are
of type 1 or type 2
4. a matrix obtained by applying the same permuta-
tion to the rows and the columns of a matrix of
type 3
We denote the variance of the diagonal elements of A
(multiplied by n) by vardiag(4),

> (@i — tx(A) /)

Z aii® — tr(A)?/n.

vardiag(A) =

I

Obviously we have the following,
vardiag(A) >0, off(4)=>0
vardiag(A) + off (4) = Z ai;? — tr(A)%/n.

i,J

The last equality shows that vardiag(A) + off (4) is
invariant under similar transformations by orthogonal
matrices. Therefore the dynamical system (4) can be
regarded as the steepest ascent equation of vardiag(A)
as well as the steepest descent equation of off (A).

Observing off (A) = 0 holds for the type 1 fixed points
and vardiag(A) = 0 does for the type 2 fixed points,
we see that the type 1 fixed points correspond to the
global minima of the potential function ¢2(A) and the
type 2 fixed points do to the global maxima. The type
1 fixed points exist for any initial matrix A(0) and are
isolated points. On the other hand, the following lemma
guarantees the existence of the type 2 fixed points for
any initial matrix.

Lemma 1. Any diagonal matrix can be transformed to
a matrix with equal diagonal elements by an orthogo-
nally similar transformation,

A x k... %

® . k... %

GG=|, .
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where A = diag(A1,Az2,... ,An), G € SO(n), A = (A1 +
A2 + -+ + Ap)/n and * means an arbitrary value.

The type 3 and type 4 fixed points are not global
minima or global maxima of ¢2(A). It is expected for
the Hessian of the potential function at the type 3 and
type 4 fixed points to have both of negative and positive
diagonal elements when it is diagonalized.

3. Concluding Remarks

The properties of the fixed points of two gradi-
ent equations on orthogonal groups have been studied
through the critical point analysis of their potential
functions. These observations show that some prop-
erties of these gradient equations are not specific to
the equations but are shared with other gradient equa-
tions of the same potential functions with respect to
other metrics on orthogonal groups. The fixed points of
Brockett’s equation (2) have been classified according
to the index number. The fixed points of the gradient
equation of off-diagonals (4) have been classified into
four categories and the stabilities of the fixed points of
each category are discussed. We note that there is a cer-
tain inequality between the number of the fixed points
of the gradient equations with specified index numbers
and the rank of the free part of the homology groups of
the orthogonal groups on which the gradient equations
are defined.
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