A Parallel Branch-and-Bound Method for the Traveling Salesman Problem and Its
Implementation on a Network of PCs

Noritaka Shigei’, Mitsunari Okumura?® and Hiromi Miyajima'
1Department of Electrical and Electronics Engineering,
Kagoshima University, Japan
E-mail: shigei@eee kagoshima-u.ac.jp
?Department of Computer Science, Shimane University, Matsue, Japan

Abstract: This study presents a parallel branch-and-bound
(PBAB) method for traveling salesman problem (TSP). The
PBAB method adopts intermediate form of central control
and distributed control in terms of the lightness of the master
process’s role, Compared with fully distributed control, the
control scheme involves less concentration of communica-
tion on the master. Moreover, in order to reduce the influence
of communication, the worker is composed of a computation
thread and a communication thread. The multithreadness re-
alizes the almost blocking free communications on the mas-
ter. We implement the proposed PBAB method on a network
of PCs, which consists of one master and up to 16 workers.
We experiment five TSP instances. The results shows that
the efficiency increases with the problem size.

1. Introduction

The traveling salesman problem (TSP) is the most popular
NP-hard problems{2]. Parallet branch-and-bound (PBAB)
methods have been considered to reduce the solution time[5],

{4]. The key to achieve good efficiency in the PBAB methods -

is dynamical load balancing. In general, the dynamical load
balancing schemes are classified into two types: central con-
trol and distributed control. In the central control schemes, a
master process (shortly called master) knows the states of ev-
ery worker processes (shortly called workers), and assigns a
subproblem to idle processes. The processing of the master,
however, is a bottleneck when the number of processors is
large. On the other hand, in the distributed control schemes,
every processors cooperatively assign a subproblem to idle
processors. A processor in general is allowed to cooperate
with the limited processors, because the non-limited cooper-
ation makes a network bottleneck. Tschoke et al. [5] con-
sidered distributed control, and Shinano et al. [4] considered
hybrid control schemes.

In order to achieve high efficiency in the PBAB meth-
ods, it is important to reduce the following three factors:
(1) idleness of processors, (2) communication overhead and
(3) search overhead. However, among the three factors,
there exist tradeoffs. Reducing idleness of processors and
search overhead involves increasing communication over-
head, because the reduction requires frequent communica-
tion between the processors.

This study presents a PBAB method that reduces commu-
nication overhead independent of idleness of processors and
search overhead. The PBAB method adopts an intermediate
form of central control and distributed control in terms of the
lightness of the master’s role. The main roles of the master
are (1) memorizing the states of the workers, (2) directing

to divide subproblems, and (3) supervising the current upper
bound through all subproblems. After directing a division,
the division process is progressed between a pair of workers.
Compared with fully distributed control, the control scheme
involves less concentration of communication on the master.
Moreover, in order to reduce the influence of communication,
the worker processors use a computation thread and a com-
munication thread. The multithreadness realizes the almost
blocking free communications on the master. We implement
the proposed PBAB method on a network of PCs, which con-
sists of one master and up to 16 workers. We experiment
five TSP instances. The results shows that the efficiency in-
creases with the problem size. Further, for an instance, the
proposed method achieves the better performance than Shi-
nano’s methods{4].

2. Preliminaries
2.1 Traveling Salesman Problem
The traveling salesman problem (TSP) is a problem that
finds the shortest path visiting all the N cities just once. This
paper considers the symmetrical TSP, in which ¢;; = ¢;;,
where ¢;; is the cost of edge from i-th city to j-th city.
Let M = Mz—"gl Let ¢, be the cost of e-th edge (e €

{1,2,---M}). The symmetrical TSP P is to find a (0,1)
vector X = (21, %2, -+ ,Zn) such that:

M M
min ZZceze

e=1 e=1

s.t. 2%22 Vie{1,2,---,N}
e€6(3)
> z22 VSc{L2--,N}
e€é(9)
ze € {0,1} Vec{l,2,---,N},

where z. = 1 means that the e-th edge is selected, and
4(S) is the set of selected edges which connect S and
{1,2,--- ,N} - 8.

2.2 Branch-and-Bound Method

Branch-and-bound (BAB) methods have been widely
used for solving the TSP. The BAB algorithm contains two
main procedures: branching and bounding. In branching
procedure, a problem is divided into several subproblems. In
bounding procedure, a lower bound for each subproblem is
calculated, and the subproblems whose lower bound is higher
than the current upper bound are discard.

ITC-CSCC 2002

SBAB (problem P) {
P —{P};
U — 00;
while (P#0) {
Calculate a lower bound [, for a problem p € P;
P« P-p;
if (Up<u) {
if (Ipis the cost of a tour) {
/* bounding */
U — lp;
for all pe Pstl,>u,P— P —p;
} else {
/* branching */
Selectanedge e € E — (RU F), where E is
the set of all edges and p = P(R, F);
P~ PU{PRUe,F),P(R,FUe¢)};

}
}
The tour for upper bound u is the solution;

}
Figure 1. Sequential BAB

Let P(R, F') be a subproblem of a problem P or a sub-
problem. R is a set of required edges, and F' is a set of for-
bidden edges. In a feasible solution X = (z1,--- ,zn) of
P(R,F),foranye € R;x. = 1,and forany e € F; z, = 0.

Our parallel BAB (PBAB) method presented in the next
section is a parallelization of a sequential BAB (SBAB) al-
gorithm based on 1-tree relaxation{1]. In the BAB algorithm,
a lower bound [, for a subproblem p is obtained by calculat-
ing a minimum 1-tree £ for p. When ¢ is a tour, I, is the upper
bound for p. A pseudo-code for the sequential BAB (SBAB)
algorithm is shown in Fig. 1.

3. Parallel BAB Method

The proposed PBAB method uses one master process and
more than one worker processes. At most one process runs
on a processing node. We assume that the method runs on
a distributed memory parallel computers based on message
passing communication such as network of PCs.

3.1 Master Process

The main roles of the master process are (1) memorizing
the states of the workers, (2) directing to divide subproblems,
and (3) supervising the current upper bound through all sub-
problems. The master operates as follows:

Master:

1. The master memorizes the states of the workers, which
are “idle or active”, “the number of branchings” and
“the lower bound”. The states are periodically informed
from the workers.

2. When an idle worker requests a subproblem, accord-
ing to the memorized states the master selects an active
worker which will divide a subproblem. Then the mas-
ter requests the selected worker to divide a subproblem
to the idie worker.

computation_thread () {
Py
U — 00;
rq —false;
while (true) {
if (P=0) {

Inform request for subproblem to master;

if (asubproblem p is received) {
Inform reception to master;

P~ P+p;

} else if (termination is informed) {
Return acknowledgement to master;
Terminate worker process;

}

}
Calculate a lower bound [, for a subproblem p € P;
if (I, is the cost of tour) {

Inform [, to master as an upper bound;

} else {

/* branching */

Select anedge e € E — (R U F), where E is

the set of all edges and p = P(R, F);

P~ PU{P(RUe,F),P(R,FUe)};

}

/* bounding */

for all pe Pstl,>u, P+~ P —p;
if (rq=true and P#0) {

Send a subproblem p € P;

P« P—p;

rq «— false;

}
Inform the number of branchings and a lower bound;

Figure 2. Computation thread

3. When a worker informs a new upper bound, the master

informs the upper bound to every workers.

4. When all workers become idle, the master notifies ter-

mination of the task to them.

Since the master process can communicate with at most
one worker process at a time, multiple accesses from work-
ers may cause congestion. However, our master process €x-
changes less amount of messages with worker processes than
a typical master process. The master process has no sub-
problem, but all the subproblems are distributed over all the
worker processes. After the master directs a division, the
division process is progressed between a pair of workers.
Therefore, the length of messages treated by the master is
not proportional to the problem size N. It may reduces con-
gestion on the master process.

3.2 Worker Process

The master may send a division request and a new up-
per bound to a worker. Checking periodically whether the
master try to send messages or not can degrade the perfor-
mance of PBAB methods. A long checking period leaves

ITC-CSCC 2002

communication_thread() {
while (true) {
if (upper bound upey is received)
U Unews
else if (work division is re-
quested)
rq «—true;

}

Figure 3. Communication thread

Master Worker i
Comp. th.
(1). Request for subprobles
Select an active workerf quest) £ No subproblem
Set worker i to idle, I* Receive subproble,
Worker j selected S). Info . |_
. Inform reception :
Set worker i to z

§ Comm. th.

2 .

; Worker j

£ Comp. th.

IS 4). Send bl

< Select subproblem @ o subproblem

§ A

g :

= Comm. th. {8
S Ly Set g to rue+*

Figure 4. A work transferring process: worker 7 requests a
subproblem and receives a subproblem from worker j.

workers idle for a long time, and a short checking period in-
creases overhead. To overcome this difficulty, the worker
process is composed of two types of thread: computation
thread and communication thread. The computation thread
mainly solves a subproblem using a BAB algorithm. The
communication thread devotes to receiving messages from
the master. Therefore the master sends the messages in al-
most blocking free. The messages received by the com-
munication thread are passed to the computation thread via
shared memory. Pseudo-codes for the two threads are shown
in Fig.2 and Fig.3. Fig.4 shows the simplest work transfer-
ring process. If unlike the case of Fig.4 worker j becomes
idle before completing the work division (worker j requests
a subproblem), the master re-requests another active worker
to divide a subproblem.

3.3 Division of Subproblems

As the calculation progresses, the number of subproblems
increases. If a small subproblem is transferred to an idle
worker, the worker will soon finish solving the subproblem.
From the other viewpoint, in such a case, it is expected to
find a new upper bound and to reduce the search overhead.
It seems to exist a tradeoff. From the observation, we con-
sider dividing a subproblem from a fixed branching level L
(0 < L < 1). Level L = 0 means a first branching level, and
level L = 1 means a last branching level. In the next section,
effective branching levels are experimentally investigated.

Table 1. The computation times on a sequential computer

Name | # of cities Time |
RD50 50 47.61 sec
RD70 70 562.77 sec
ST70 70 258.57 sec
RD90 90 4067.80 sec
RD100 100 2350.48 sec

4. Experiments and Observations

We implement the PBAB method on a network of PCs by
using a thread-safe MPI. The network of PCs consists of 1
master and up to 16 workers, each of which comprises single
Intel 450MHz Celeron processor. The PCs are connected via
a First Ethernet switch. We experiment five TSP instances:
rd50, rd70, rd90, st70 and rd100. A number in the instance
names indicates the number of cities. Instances rdS0, rd70
and rd90 are original random instances. Instances st70 and
rd100 are from the TSPLIB[3]. Their computation times on
a sequential computer are summarized in Table 1. Table 1
implies that the order in difficulty is RD90, RD100, RD70,
ST70 and RDS0.

Table 2 and Figure 5 show the experiment resuits in
terms of the speedup. The speedup is (the parallel solution
time)/(the sequential solution time). Table 2 shows the results
for our original instances rd50, rd70 and rd90. According
to the results, the best branching level Ly.s; depends on the
problem, and it seems to be 0 < Lp.s: < 0.3. The efficiency
of our method increases with the instance size. Moreover,
for rd90, our method achieves super-linear speedup. In Fig-
ure 5, our method and Shinano’s method are compared for
instances st70 and rd100. For rd100, which is more diffi-
cult than st70, our method outperforms Shinano’s one. From
the experiment results, we can find that the efficiency of our
method increases with the difficulty of the problem.

5. Conclusion

This study presents a PBAB method for TSP and imple-
ments the method on a network of PCs. The PBAB method
adopts an intermediate form of central control and distributed
control in terms of the lightness of the master’s role. The
worker process is composed of two threads. It realizes that
the master sends the messages in almost blocking free. The
performed simulation results show that the efficiency of our
method increases with the difficulty of the problem.

References

[1] M. Held and R.M. Karp. The traveling salesman prob-
lem and minimum spanning trees. Operations Research,
18:1138-1162, 1970.

[2] E.L.Lawler, J.K. Lenstra, A H.G. Rinnoy-Kan, and D.B.
Shmoy. The traveling salesman problem. John Wiley &
Sons, Chichester, 1985.

[3]1 G. Reinelt. Tsplib - a traveling salesman problem library.
ORSA Journal on Computing, pages 376-384, 1991.

(4] Y. Shinano, K. Harada, and R. Hirabayashi. Control

ITC-CSCC 2002

Table 2. The speedup for rd50, rd70 and rd90.

Instance L Number of Workers
Name 21 4 1 6 | 8 | 10 12 14 16
rd50 0 ||210] 343 | 427 | 475 | 5.14 | 558 | 5.69 | 591
0.1 179 277 | 377 | 418 | 449 | 486 | 5.19 | 5.36
031187] 463 | 578 | 6.8 | 767 | 790 | 7.68 | 9.10
06 || 1.58 | 2.84 3.91 4.56 4.54 5.67 547 6.41
1d70 0 |j260}] 434 § 677 | 817 | 9.49 | 10.21 | 1196 | 12.90
0112231 408 | 556 | 801 | 9.69 | 10.71 | 11.50 | 12.31
03] 301 526 | 8.14 | 9.67 | 10,63 | 11.56 | 12.16 | 12.52
061 221 407 { 628 | 778 | 9.86 { 11.03 { 10.32 | 10.69
rd90 0 || 586 | 11.56 | 17.73 | 23.56 | 29.24 | 32.34 | 3497 | 37.31
0.1)| 225] 1073 | 19.57 | 25.05 | 29.16 | 32.19 | 35.50 | 38.96
03[343 | 9.06 | 13.33 | 18.19 | 22.25 | 25.31 | 29.36 | 30.93
0.6 || 285 | 6.66 | 10.78 | 11.92 | 16.83 | 20.52 | 23.61 | 27.87
14 ——r r ~—
st70, proposed —¢— %
12 }-st70, shinano -~ +-- et
rd100, proposed --%-- P Y
10 +rd100, shinano ~——T-- e i
o 1 P Ve
= L.t Vs
2" x A
m ' 5 J//)
4 L N -t i .
PE & pa ; S oy
S R B
2 fremsk
0 i
2 3 4 5 6 7 8 9 10
Number of workers

Figure 5. The speedup for st70 and rd100.

schemes in a generalized utility for parallel branch-and-
bound algorithms. In Proc. of IPPS’97, 1997.

{5} S. Tschoke, R. Liiling, and B. Monien.

Solving the

traveling salesman problem with a parallel branch-and-
bound algorithm on a 1024 processor network. In Proc.

of IPPS’95, 1995.

ITC-CSCC 2002

