## 주기적으로 분극 반전된 LiNbO3를 이용한 우수한 광 소멸성의 Bragg 변조기

## Extinction Ratio Enhanced Bragg Modulator based on Periodically Poled LiNbO<sub>3</sub>

이수석, 김중헌, 오현호\*, 이돈희\*, 부종욱\*, 윤춘섭

KAIST 물리학과
\*LG 전자기술원 소자재료연구소 Micro System Group
csyoon@mail.kaist.ac.kr

Modulators based on Bragg diffraction in periodically poled LiNbO<sub>3</sub> (PPLN) offer the potential to overcome disadvantages inherent in the more conventional acousto-optic and electrooptic modulators, such as low efficiency in the infra-red and high driving voltages. Previous works<sup>(1),(2)</sup> showed that the extinction ratio of laser beam was low because of the presence of internal field in PPLN. We fabricated a PPLN that had no index grating when external electric field was absent.

A schematic view of the Bragg modulator device is shown in Figure 1. A z-polarized He-Ne laser beam is incident on the y-face with an internal angle of  $\theta_{int}$ . The sample has periodically poled structure forming a grating of length d and period  $\Lambda$  with the grating k-vector parallel to the x-axis of the crystal. By applying a uniform electric field, E between the  $\pm z$  faces, the change in extraordinary index across a domain wall is expressed as  $\Delta n_e = n_e^3 r E$ , where r is electro-optic (EO) coefficient and  $n_e$  is refractive index of extraordinary wave. The largest electro-optic coefficient is accessed by using z-polarized light with a value of  $r_{33}$ = 33 pm/V<sup>(3)</sup>. The first-order diffraction efficiency of the Bragg grating is given by<sup>(4)</sup>

$$\eta = \sin^2 \left( \frac{\pi \Delta n_e d}{\lambda \cos \theta_{int}} \right),$$

where  $\sin \theta_{int} = \lambda/(2n_e \Lambda)$ 

For periodic poling, a Cr/Au electrode of  $3 \mu m$  width and 8mm length was deposited on +z face of a 0.2 mm thick LN wafer, and liquid LiCl electrode was used on -z face. The grating period was 10  $\mu m$ . Domain reversal was achieved by applying a single pulse of 21.0 kV/mm to the wafer with 500 ms pulse duration. Figure 2 shows etched domain patterns of +z, y and -z faces, respectively from left to right and the duty ratio is about 50%.

In order to remove the refractive index contrast across the domain walls, the sample was annealed in air atmosphere at  $350^{\circ}$ C for 12h to allow the internal field to relax in the reversed domain followed by slow cooling (1°C/min) to room temperature. Using a polarizing microscope, it was confirmed that the refractive index contrast between the domain walls of opposite polarization

disappeared after annealing.

Fractional diffraction efficiency of 1st- and 0th- orders are plotted in Figure 3. The 1st-order diffraction efficiency at 0 V is about  $\eta_f$ = 0.002 as expected and the maximum efficiency is about  $\eta_f$  = 0.37 at  $\pm 40$ V. Low diffraction efficiency might be caused by nonuniform duty ratio of PPLN. However, an extinction ratio of about 200:1 could be achieved after the annealing treatment.

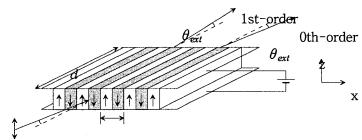



Fig. 1 Schematic diagram of the Bragg modulator using periodically poled LiNbO<sub>3</sub>.

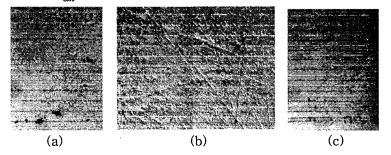



Fig. 2 Etched domain patterns of (a)+z, (b)y, and (c)-z faces of PPLN.

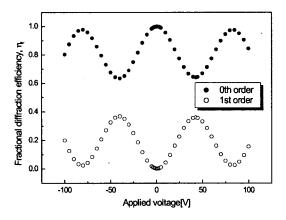



Fig. 3 Fractional diffraction efficiency of 1st and 0th orders with an applied voltage.

- 1. H. Gnewuch, C. N. Pannell, G. W. Ross, P. G. R. Smith, and H. Geiger, IEEE Photonics Tech. Lett. 10, 1730(1998).
- 2. J. A. Abernethy, R. W. Eason, and P. G. R. Smith, in Conf. Laser and Electro-Optics, Chiba, Vol. 1, I-102, Proceeding(2001).
- 3. Crystal Technology, Inc. An EPCOS Company.
- 4. H. Kogelnik, The Bell System Technical Journal, 48, 2909(1969).