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Propagation properties of anisotropic optical vortex

through a self-defocusing medium
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Optical vortices have been of interest because of helical wavefront structure, unlike planar
wavefront [1]. They are characterized by a dark core in the beam pattern and by accumulated phase
change of 2 mn around the vortex core, where m is referred to be a topological charge. These
topological defects show particle-like properties like electronic charges when they interact with
background beam or other vortices, such as the conservation of topological charges,
attractive/repulsive interactions between same/opposite charges, creation and annijhilation of charge
pairs, and so on. A particular characteristic of topological charges is that they tend to rotate each
other.

Linear propagation properties was well studied analytically [2]. In the case of nonlinear
propagation, they attracted much interest since they develop into optical vortex solitons that can
guide signal beam through the self-induced spatial fiber [3]. Most of these studies by experimental
and theoretical/numerical approaches were focused on optical vortices with isotropic phase profiles,
that is, with constant phase gradient along a circular path of wavefront ramp. In this paper, our
interest is extended to include optical vortices with anisotropic phase profiles [4]. The propagation
properties of anisotropic optical vortices through a self-defocusing nonlinear medium is studied
numerically.

Well-known analytical form of a single vortex is A(x, y) = Ay(x, y) exp(im@),where A, is the

complex amplitude which goes to zero near the vortex, ¢=tan ~X( y/x) is an azimuthal angle in the
cylindrical coordinates. In this case, the phase gradient along a circular path with unit radius is

constant, V ¢= m around the point defect. Here we can introduce the anisotropy as follows:
E(x,y)=Ey(x,y) (x+ioy)" = A(x, y) exp(im®), (1

where @= tan “'(oy/x), and o is the anisotropy parameter which is one of fundamental parameters

that determine the internal structure of the vortex. For | ¢l > 1, equi-phase lines are pushed to the

x-axis whereas they are pulled to the y-axis for | o] < 1. Of course, | ol = 1 for isotropic vortices.
Nonlinear propagation of a beam in a self-defocusing Kerr-like medium is described by
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(1+2)-dimensional nonlinear Schrodinger equation as follows:
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where k= mpk; is the wave number in the medium. The intensity-dependent refractive index

change is An = nylA|® (1), where n, is referred to be the nonlinear refractive index coefficient.

Here it is assumed that the response of material is instantaneous and the loss is zero.
In numerical simulations, it is assumed that the background intensity profile is Gaussian. Initial
field can be expressed as follows:

A(x,y) = Aytanh(#/w,) exp(im®) exp(— */w}). 3

The nonlinear refractive index change of An = 2x107° supports the vortex soliton with the core

radius of w, = 22.6um where A = 500nm and #»n; = 1 are assumed. The transverse numerical

grid was 1200X1200 with element size of 1.1 p#m. In this paper, the background beam radius is
fixed to be wy = 10w,.

Figure shows contoured gray-scale beam pattern after the vortex beam of (a) propagates the
distance of (b) 0.3cm, (c) 16cm, and (d) 64cm when m = 1 and ¢ = 5. It shows that the dark
core of vortex soliton is established stably even though the diffraction affects the background beam
severely at the initial stage. The phase distributions (not shown here) also shows that the
anisotropic vortex changes into an isotropic vortex during the propagation through a self-defocusing
medium while it doses not change into an isotropic one during the propagation through a linear
(free-space) medium.

(b)
Fig. Contoured gray-scale beam pattern after the vortex beam of (a) propagates
the distance of (b) 0.3cm, (¢) 1.6cm, and (d) 64cm when m = 1 and ¢ = 5.
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