타입-2 퍼지 집합치사상의 성질에 관하여

Some properties of type-2 fuzzy set-valued mappings

김현미, 。장이채, 전종득 경희대학교 이학부, 。건국대학교 전산수학부

Hyun-Mee Kim, . Lee-Chae Jang, and Jong-Duck Jeon
Dept. of Mathematics Kyung Hee University
Dept. of Math. & Computer Sciences KonKuk University
E-mail: love4g@hanmail.net

Abstract

In this paper we introduce the concepts of type-2 fuzzy set-valued mappings and quasi-convex fuzzy mappings on L-L fuzzy numbers and discuss some properties of these mappings.

Key-words: fuzzy numbers; L-L fuzzy numbers; fuzzy mapping; quasi-convex

1. Preliminaries and definitions

Let X be a finite set. A fuzzy set A in X is defined by $A = \{ (x, \mu_A(x)) | x \in X \}$, where $\mu_A : X \rightarrow [0,1]$ is the membership function of A. When $\mu_A(x)$ becomes a fuzzy set, A becomes a type-2 fuzzy set.

Now, since a type-2 fuzzy set is obtained by assigning fuzzy membership values to elements of X, we can extend the set-theoretic operations of ordinary fuzzy set theory to allow them to deal with fuzzy grades of membership.

We will use the following concept of fuzzy number. Let R be the real numbers and let [0,1] be the unit interval in R. Let F(R) denote the set of all fuzzy sets in R.

Definition 1.1 [1,2] A fuzzy set $A \in F(R)$ is called a fuzzy number if

(1) A is normal; i. e., there exists $x_0 \in R$

such that $\mu_A(x_0) = 1$,

- (2) A is convex; i. e., $\mu_A(\lambda x + (1-\lambda)y) \ge \min(\mu_A(x), \mu_A(y))$ for all $x, y \in R$ and $\lambda \in [0,1]$,
- (3) For any $\alpha \in [0,1]$, α is a closed interval and $cl(A_0) = cl$ $\mu_A(x) > 0$) is compact. Here, $cl(A_0)$ is the closure of A_0 .

Definition 1.2 [2] A fuzzy number M is said to be L-R fuzzy number, $M=(m,\alpha,\beta)_{LR}$ if its membership function is defined by (i) when $\alpha > 0$ and $\beta > 0$,

$$\mu_{M(x)} = \begin{cases} L(\frac{m-x}{\alpha}) & \text{for } m-\alpha \le x \le m \le 1, x \ge 0 \\ R(\frac{x-m}{\beta}) & \text{for } m+\beta \ge x \ge m \ge 0, x \le 1 \\ 0 & \text{else} \end{cases}$$

(ii) when $\alpha = 0$ and $\beta > 0$,

$$\mu_{M(x)} = \begin{cases} R(\frac{x-m}{\beta}) & \text{for } m+\beta \ge x \ge m \ge 0, x \le 1\\ 0 & \text{else} \end{cases}$$

(iii) when $\alpha > 0$ and $\beta = 0$,

$$\mu_{M(x)} = \begin{cases} L(\frac{m-x}{\alpha}) & \text{for } m - \alpha \le x \le m \le 1, x \ge 0 \\ 0 & \text{else} \end{cases}$$

(iv) when $\alpha = 0$ and $\beta = 0$,

$$\mu_{M(x)} = \begin{cases} 1 & \text{for } x = m \\ 0 & \text{else} \end{cases}$$

where α and β are called the left and right spreads of an L-R fuzzy number M, respectively, and L and R are strictly decreasing continuous functions from [0,1] to [0,1] such that L(0)=R(0)=1 and L(1)=R(1)=0. In this case, L and R is called the left and the right shape function, respectively. A_{LR} will stand for the class of all L-R fuzzy numbers of [0,1].

Definition 1.3 [2] Let $M_x = (m_x, \alpha_x, \beta_x)_{LR}$ and $M_y = (m_y, \gamma_y, \delta_y)_{LR}$ be elements to A_{LR} . Then $\max^{\sim} (M_x, M_y)$, $\min^{\sim} (M_x, M_y)$ are defined by

$$\max (M_x, M_y) = (m_x \vee m_y, \alpha_x \wedge \gamma_y, \beta_x \vee \delta_y)_{LR},$$

$$\min^{\sim}(M_x, M_y) = (m_x \wedge m_y, \alpha_x \vee \gamma_y, \beta_x \wedge \delta_y)_{LR},$$

where $x \lor y$ and $x \land y$ are max x, y and min x, y, respectively.

We note that max and min are commtative and associative operations; they are mutually distributive.

Theorem 1.4 [2] If $M = (m, \alpha, \beta)_{LR}$ and $N = (n, \gamma, \delta)_{RL}$ be elements to A_{LR} and A_{RL} , respectively, then

$$M \ominus N = (m-n, \alpha+\gamma, \beta+\alpha)_{LR}$$

By using the theorem 1.4, we can obtain the following complement of L-R type-2 fuzzy numbers.

Definition 1.5 [2] Let $M = (m, \alpha, \beta)_{LR}$ and $M^1 = (1, 0, 0)_{RL}$ be elements to A_{LR} and A_{LR} , respectively. The complemented M^* of M

is defined by $M^* \equiv M^1 \ominus M = (1 - m, \beta, \alpha)_{RL}$

2. Main results

Let X and Y be finite sets. We consider that A_{LL} is the class of all L-L fuzzy numbers of [0,1].

The collection of type-2 fuzzy set-valued mappings of a set X is denoted by $F_2(X)$, i.e., $M \in F_2(X) \iff M: X \rightarrow A_{LL}$ by $M(x) = M_x$.

Definition 2.1 We say that ψ is a type-2 fuzzy set-valued mapping on $X \times Y$ if (1) $\psi: X \times Y \to A_{LL}$ by $\psi(x, y) = M_{xy} \in A_{LL}$, $\forall (x, y) \in X \times Y$ (2) $\forall x \in X$, there exists $y \in Y$ such that $\max_{x} (\psi(x, y)) = (1, 0, 0)_{LL} = M^{1}$.

Definition 2.2 Let ψ be a type-2 fuzzy set-valued mapping on $X \times Y$. T_{ψ} is called the inverse image operator associated with ψ iff $\forall M \in F_2(Y)$, $\forall x \in X$,

$$(T_{\phi}M)(x) = \max_{x} (\min_{y} (\psi(x, y), M_{y})).$$

From the definition 2.2, it is ease to show that T_{ψ} : $F_2(Y) \rightarrow F_2(X)$ is a mapping from type-2 fuzzy sets of Y to type-2 fuzzy sets of X.

Definition 2.3 [2] Let $M_x = (m_x, \alpha_x, \beta_x)_{LL}$ and $N_x = (n_x, \gamma_x, \delta_x)_{LL}$ be elements of A_{LL} .

Then, we define the order \leq of M_x and N_x ; $M_x \leq N_x$ if and only if $m_x \leq n_x$, $\alpha_x \geq \gamma_x$, and $\beta_x \leq \delta_x$.

Definition 2.4 [2] Let $M, N: X \to A_{LL}$ be type-2 fuzzy set-valued mappings of a set X. Then we define the order \leq of M and N; $M \leq N$ iff $M_x \leq N_x$, $\forall x \in X$.

Theorem 2.5 [2] Let $M = (m, \alpha, \beta)_{LL}$ and $N = (n, \gamma, \delta)_{LL}$ be elements of A_{LL} . Then, we have $\max^{\sim}(M, N) = N$, $\min^{\sim}(M, N) = M$ if and only if $m \le n$, $\alpha \ge \gamma$, and $\beta \le \delta$.

Proposition 2.6 Let T_{ψ} be the inverse image operator associated with ψ and $M^0 = (0,0,0)_{LL}$. Then we have

- $(1) (T_{\omega} M^{0})(x) \leq M^{0},$
- (2) $(T_{\omega} M^1)(x) \leq M^1$,
- (3) T_{ψ} is order preserving,
- $(4) (T_{a} M^{0*})(x) \leq M^{1},$
- (5) $(T_{\psi} M^{1*})(x) \leq M^{0}$.

We note that if $M, N \in F_2(Y)$, then $\max^{\sim}(M, N)$ means $\max^{\sim}(M, N)(y) = \max^{\sim}(M_y, N_y)$ for all $y \in Y$ and $\max^{\sim}(T_{\psi}M, T_{\psi}N)$ means $\max^{\sim}(T_{\psi}M, T_{\psi}N)(x) = \max^{\sim}(T_{\psi}M(x), T_{\psi}N(x))$ for all $x \in X$.

Proposition 2.7 Let M and N be elements of A_{LL} and let T_{ϕ} be the inverse image operator associated with ϕ . Then we have

$$T_{\psi}(\max^{\sim}(M,N)) = \max^{\sim}(T_{\psi}M, T_{\psi}N).$$

Proposition 2.8 Let M and N be elements of A_{LL} and let T_{ϕ} be the inverse image operator associated with ϕ . Then we have $T_{\phi}(\min^{\sim}(M,N)) \leq \min^{\sim}(T_{\phi}M,T_{\phi}N)$ with equality hold if $M \leq N$ or $M \geq N$.

Now, we introduce the concept of quasi-convex and quasi-concave fuzzy mappings and present some properties of theses fuzzy mappings.

Definition 2.9 Let L, M, and N be elements of A_{LL} . A fuzzy mapping $S: F_2(Y) \rightarrow F_2(X)$ is said to be quasi-convex, if

 $S(M) \le \max^{\sim} S(L), S(N)$ whenever $L \le M \le N$.

Definition 2.10 Let L, M, and N be elements of A_{LL} . A fuzzy mapping $S: F_2(Y) \to F_2(X)$ is said to be quasi-concave, if $S(M) \geq \min^{\sim} S(L)$, S(N) whenever $L \leq M \leq N$.

Proposition 2.11 For any type-2 fuzzy set-valued mapping ψ , T_{ψ} is quasi-convex fuzzy mapping.

Proof. Let L_y , M_y , N_y be elements of A_{LL} and let $L_y \le M_y \le N_y$. By proposition 2.6 (3) and theorem 2.5, we have $\max^{\sim} (T_{\phi}L, T_{\phi}N) \le \max^{\sim} (T_{\phi}L, T_{\phi}M) = T_{\phi}M$.

Proposition 2.12 For any type-2 fuzzy set-valued mapping ψ , T_{ψ} is quasi-concave fuzzy mapping.

Proof. The proof of this proposition is quite similar to that of proposition 2.11.

Proposition 2.13 Let ψ be a type-2 fuzzy set-valued mapping on $X \times Y$. If S_{ψ} is any inverse image operator associated with ψ and T_{ψ} is quasi-convex fuzzy mapping with respect to, then $S_{\psi} \circ T_{\psi}$, the composition of S_{ψ} and T_{ψ} , is quasi-convex fuzzy mapping.

Proof. Let $L_y \le M_y \le N_y$ in $F_2(Y)$. Since T_{ϕ} is quasi-convex fuzzy mapping, by using the proposition 2.7, we have

$$(S_{\psi} \circ T_{\psi})(M_{y}) = S_{\psi}(T_{\psi}(M_{y}))$$

$$\leq S_{\psi}(\max^{\sim}(T_{\psi}(L_{y}), T_{\psi}(N_{y})))$$

$$= \max^{\sim}(S_{\psi}(T_{\psi}(L_{y})), S_{\psi}(T_{\psi}(N_{y}))).$$
Thus $S_{\psi} \circ T_{\psi}$ is quasi-convex fuzzy mapping.

Proposition 2.14 Let ψ be a type-2 fuzzy set-valued mapping on $X \times Y$. If S_{ψ} and T_{ψ} are quasi-convex fuzzy mappings, then

 $S_{\psi} \circ T_{\psi}$ is quasi-convex fuzzy mapping.

Definition 2.15 Let M and N be elements of A_{LL} . A fuzzy mapping $S: F_2(Y) \to F_2(X)$ is said to be convex, if $S(\lambda M + (1-\lambda)N) \le \lambda S(M) + (1-\lambda)S(N)$ for all $\lambda \in [0,1]$.

Proposition 2.16 Let ψ be a type-2 fuzzy set-valued mapping on $X \times Y$. If S_{ψ} and T_{ψ} are convex fuzzy mappings, then $S_{\psi} \circ T_{\psi}$ is convex fuzzy mapping.

Proposition 2.17 For any type-2 fuzzy set-valued mapping ψ and ϕ , if max $\tilde{}$ ($\psi(x,y)$) = max $\tilde{}$ ($\phi(x,y)$), then $T_{\psi}=T_{\phi}$.

Proof. Suppose that $\phi = \phi$. Then, this property is trivial. Let $\psi(x, y) \neq \phi(x, y)$ be type-2 fuzzy set-valued mappings on $X \times Y$.

Let
$$\psi(x, y) = M_{xy} = (m_{xy}, \alpha_{xy}, \beta_{xy})_{LL}$$
 and $\phi(x, y) = N_{xy} = (n_{xy}, \gamma_{xy}, \delta_{xy})_{LL}$. By hypothesis, $\max^{\sim} (\psi(x, y)) = (\bigvee_{x} m_{xy}, \bigwedge_{x} \alpha_{xy}, \bigvee_{x} \beta_{xy})_{LL} = \max^{\sim} (\phi(x, y)) = (\bigvee_{x} n_{xy}, \bigwedge_{x} \gamma_{xy}, \bigvee_{x} \delta_{xy})_{LL}$, we have

$$(T_{\phi}M)(x) = \max_{x} (\min_{y} (\psi(x, y), M_{y}))$$

$$= \max_{x} (\min_{y} (M_{xy}, M_{y}))$$

$$= \max_{x} (\min_{y} ((m_{xy}, \alpha_{xy}, \beta_{xy})_{LL}, (m_{y}, \alpha_{y}, \beta_{y})_{LL}))$$

$$= \max_{x} ((m_{xy} \land m_{y}), (\alpha_{xy} \lor \alpha_{y}), (\beta_{xy} \lor \beta_{y}))_{II}$$

$$= (\bigvee_{x} (m_{xy} \wedge m_{y}), \bigwedge_{x} (\alpha_{xy} \vee \alpha_{y}), \bigvee_{x} (\beta_{xy} \wedge \beta_{xy})).$$

$$= (\bigvee_{x} m_{xy} \wedge \bigvee_{x} m_{y}), (\bigwedge_{x} \alpha_{xy} \vee \bigwedge_{x} \alpha_{y}), (\bigvee_{x} \beta_{xy} \wedge \bigvee_{x} \beta_{y}))_{LL}$$

$$= (\bigvee_{x} n_{xy} \wedge \bigvee_{x} m_{y}), (\bigwedge_{x} \gamma_{xy} \vee \bigwedge_{x} \alpha_{y}), (\bigvee_{x} \delta_{xy} \wedge \bigvee_{x} \beta_{y}))_{LL}$$

$$= \max_{x} (\min_{y} ((n_{xy}, \gamma_{xy}, \delta_{xy})_{LL}, (m_{y}, \alpha_{y}, \alpha_{y}))$$

$$(\beta_y)_{LL}))$$

$$= \max_{x} (\min_{y} (N_{xy}, M_y))$$

$$= \max_{x} (\min_{y} (\phi(x, y), M_y)) = (T_{\phi} M)(x)$$

$$\forall M_y = (m_y, \alpha_y, \beta_y) \in A_{LL}.$$
Thus $T_{\phi} = T_{\phi}.$

Reference

- D. Dubois and H. Prade, Fuzzy sets and systems; applications, Mathematics in Science and Engineering, 1978.
- [2] L.C. Jang and J.D. Jeon, The set-theoretic operations of L-R fuzzy numbers and cardinalities of type-two fuzzy sets, KFIS, vol. 11, no. 2 (2001) 115-118.
- [3] L.C. Jang and Dan Ralescu, Cardinality concept of type-two fuzzy sets, Fuzzy Sets and Systems, 118 (2001) 479-487.
- [4] S. Khalili, Fuzzy measure and mappings,J. Math. Anal. Appl., 68(1979),92–99.
- [5] Yu-Ry Syau, On convex and concave fuzzy mappings, Fuzzy sets and systems, 103(1999), 163-168.