집합치 쇼케이적분과 수렴성 정리에 관한 연구(II)

On set-valued Choquet integrals and convergence theorems(II)

장 이 채*, 김태균**, 전종득***

*건국대학교 자연대학 전산수학과

**공주대학교 과학교육연구소

***경희대학교 이학부 수학과

LeeChae Jang*, TaeKyun Kim**, JongDuek Jeon***

*Dept. of Math. & Com. Sciences, Konkuk University

**Institute of Science Education, Kongju National University

***Dept. of Math., Kyunghee University

く개요〉

이 논문에서는 구간 수의 값을 갖는 함수들의 쇼케이적분을 생각하고자 한다. 이러 한 구간 수의 값을 갖는 함수들의 성질들을 조사하여 오토연속인 퍼지측도에 관련된 쇼케이적분에 대한 수렴성 정리를 중명한다.

1. Introduction

It is well-known that closed set-valued functions had been used repeatedly in many papers [1,2,4,5,6,7,8]. Jang et al. [6,8] studied closed set-valued Choquet integrals and convergence theorems under some sufficient conditions, for examples; (i) convergence theorems for monotone convergent sequences of Choquet integrably bounded closed set-valued

functions(see [6]), (ii) covergence theorems for the upper limit and the lower limit of a sequence of Choquet integrably bounded closed set-valued functions (see[8]).

The aim of this paper is to prove convergence theorem for convergent sequences of Choquet integrably bounded interval number-valued functions in the metric \triangle_S (see Definition 3.4).

2. Definitions and preliminaries

Proceedings of KFIS 2002 Spring Conference, 2002. 5. 25

Definition 2.1 [7,9] (1) A fuzzy measure on a measurable space (X, \mathcal{C}) is an extended real-valued function

 $\mu: \mathcal{E} \to [0, \infty]$ satisfying

- (i) $\mu(\emptyset) = 0$
- (ii) $\mu(A) \leq \mu(B)$,

whenever $A, B \in \mathcal{E}$, $A \subseteq B$.

(2) A fuzzy measure μ is said to

be autocontinuous from above[resp., below] if $\mu(A \cup B_n) \rightarrow \mu(A)$ [resp., $\mu(A \sim B_n) \rightarrow \mu(A)$] whenever

$$A \in \mathcal{E}$$
, $\{B_n\} \subset \mathcal{E}$ and $\mu(B_n) \rightarrow 0$.

(3) If μ is autocontinuous both from above and from below, it is said to be autocontinuous.

Recall that a function $f: X \to [0, \infty)$ is said to be measurable if $\{x \mid f(x) > \alpha\} \in \mathcal{C}$ for all $\alpha \in (-\infty, \infty)$.

Definition 2.2 [9] (1) A sequence $\{f_n\}$ of measurable functions is said to converge to f in measure, in symbols $f_n \to_M f$ if for every $\varepsilon > 0$,

$$\lim \mu(\{x||f_{n(x)}-f(x)|>\varepsilon\})=0.$$

(2) A sequence $\{f_n\}$ of measurable functions is said to converge to f in distribution, in symbols $f_n \to_D f$ if for every $\epsilon > 0$,

 $\lim_{n\to\infty}\mu_{f_n}(r)=\mu_f(r) \quad e.c., \qquad \text{where}$ $\mu_f(r)=\mu(\{x|f(x)>r\}) \quad \text{and} \quad \text{"e.c."} \quad \text{stands}$ for "except at most countably many values of r".

Definition 2.3 [9] (1) The Choquet integral of a measurable function f with respect to a fuzzy measure μ is defined

by

$$(C)\int fd\mu=\int_0^\infty \mu_f(r)\,dr$$

where the integral on the right-hand side is an ordinary one.

(2) A measurable function f is called integrable if the Choquet integral of f can be defined and its value is finite.

Throughout the paper, R^+ will denote the interval $[0, \infty)$,

 $I(R^+) = \{[a, b] | a, b \in R^+ \text{ and } a \le b\}$. Then a element in $I(R^+)$ is called an interval number. On the interval number set, we define; for each pair $[a, b], [c, d] \in I(R^+)$ and $k \in R^+$,

$$[a, b] + [c, d] = [a + c, b + d],$$

$$[a, b] \cdot [c, d] = [a \cdot c, b \cdot d],$$

$$k[a,b] = [ka,kb],$$

$$[a, b] \le [c, d] \Leftrightarrow a \le c \text{ and } b \le d$$

Then $(I(R^+), d_H)$ is a metric space, where d_H is the Hausdorff metric defined by

$$d_{H(A,B)} = \max \{ \sup_{x \in A} \inf_{y \in B} |x - y|,$$

$$\sup_{y \in B} \inf_{x \in A} |x - y| \}$$

for all $A, B \in I(R^+)$. By the definition of the Hausdorff metric, we have immediately the following proposition.

Proposition 2.4 For each pair $[a, b], [c, d] \in I(R^+),$

$$d_H([a, b], [c, d]) = \max\{|a - d, |b - d|\}.$$

Let $C(R^+)$ be the class of closed subsets of R^+ . Throughout this paper, we consider a closed set-valued function

$$F: X \to C(R^+) \setminus \{\emptyset\}$$
 and an interval

number-valued function

$$F: X \to I(R^+) \setminus \{\emptyset\}$$
. We denote that $d_H - \lim_{n \to \infty} A_n = A$ if and only if

$$\lim_{n\to\infty} d_H(A_n, A) = 0, \text{ where } A \in I(R^+)$$
 and $\{A_n\} \subset I(R^+)$.

We say $f: X \rightarrow R^+$ is in $L^1_c(\mu)$ if and only if f is measurable and $(C) \int f d\mu \langle \infty$. We note that " $x \in X \ \mu - a.e.$ " stands for " $x \in X \ \mu - a$ lmost everywhere". The property P(x) holds for $x \in X \ \mu - a.e.$ means that there is a measurable set A such that $\mu(A) = 0$ and the property P(x) holds for all $x \in A^c$, where A^c is the complement of A.

Definition 2.5 [5,6] (1) Let F be a closed set-valued function and $A \in \mathcal{C}$. The Choquet integral of F on A is defined by

$$(C) \int_{A} F d\mu = \{ (C) \int_{A} f d\mu \mid f \in S_{c}(F) \}.$$

where $S_c(F)$ is the family of $\mu-a.e.$ Choquet integrable selections of F, that is,

$$S_c(F) = \{ f \in L_c^1(\mu) \mid f(x) \in F(x) \mid x \in X \mid \mu - a.e. \}$$

- (2) A closed set-valued function F is said to be Choquet integrable if $(C) \int F d\mu \neq \emptyset$.
- (3) A closed set-valued function F is said to be Choquet integrably bounded if there is a function $g \in L^1_c(\mu)$ such that

$$|F(x)| = \sup_{r \in F(x)} |r| \le g(x)$$
 for all $x \in X$.

Instead of (C) $\int_X F d\mu$, we will write

 $(C)\int Fd\mu$. Let us discuss some basic properties of measurable closed set-valued functions. Since $R^+=[0,\infty)$ is a complete separable metric space in the usual topology, using Theorem 8.1.3([1])and Theorem 1.0(\$2^0\$)([5]), we have the following theorem.

Theorem 2.6 [1,4] A closed set-valued function F is measurable if and only if there exists a sequence of measurable

selections $\{f_n\}$ of F such that

$$F(x) = \operatorname{cl}\{f_n(x)\}$$
 for all $x \in X$.

Main results

Since (X, \mathcal{E}) is a measurable space

and R^+ is a separable metric space, Theorem $1.0(2^0)([4])$ implies the following theorem. Recall that a measurable closed set-valued function is said to be convex-valued if F(x) is convex for all $x \in X$ and that a set A is an interval number if and only if it is closed and convex.

Theorem 3.1 If F is a measurable closed set-valued function and Choquet integrably bounded, then there exists a sequence $\{f_n\}$ of Choquet integrable functions $f_n: X \to R^+$ such that $F(x) = \operatorname{cl}\{f_n(x)\}$ for all $x \in X$.

Theorem 3.2 If F is a measurable closed set-valued function and Choquet integrably bounded and if we define $f^*(x) = \sup\{r \mid r \in F(x)\}$ and $f_*(x) = \inf\{r \mid r \in F(x)\}$ for all $x \in X$, then f^* and f_* are Choquet integrable selections of F.

Assumption (A) For each pair $f, g \in S_c(F)$, there exists $h \in S_c(F)$ such that $f \sim h$ and $(C) \int g d\mu = (C) \int h d\mu$.

We consider the following classes of interval number-valued

functions;

 $\mathfrak{I} = \{F | F : X \rightarrow I(R^+) \text{ is measurable}$ and Choquet integrably bounded}
and

 $\Im_1 = \{ F \in \Im | F \text{ is convex} - \text{valued} \}$ and satisfies the assumption(A).

Theorem 3.3 If $F \in \mathcal{I}_1$, then we have

- (1) $cF \in \mathcal{I}_1$ for all $c \in \mathbb{R}^+$,
- (2) $(C) \int F d\mu$ is convex,
- (3) $(C) \int F d\mu = [(C) \int f_* d\mu, (C) \int f^* d\mu].$

We consider a function \triangle_S on \Im_1 defined by

$$\triangle_{S}(F,G) = \sup_{x \in X} d_{H}(F(x), G(x))$$

for all $F, G \in \mathcal{I}_1$. Then, it is easily to show that \triangle_S is a metric on \mathcal{I}_1 .

Definition 3.4 Let $F \in \mathcal{I}_1$. A sequence $\{F_n\} \subset \mathcal{I}_1$ converges to F in the metric \triangle_S , in symbols, $F_n \to_{\triangle_S} F$ if $\lim_{n \to \infty} \triangle_S(F_n, F) = 0$.

Theorem 3.5(Convergence Theorem)} Let $F, G, H \in \mathcal{I}_1$ and $\{F_n\}$ be a sequence in \mathcal{I}_1 . If a fuzzy measure μ is autocontinuous and if $F_n \to_{\triangle_s} F$

and $G \le F_n \le H$, then we have

$$d_{H-}\lim_{n\to\infty}(C)\int F_n d\mu = (C)\int F d\mu.$$

References

- [1] J. Aubin, Set-valued analysis, 1990, Birkauser Boston.
- [2] R. J. Aumann, Integrals of set-valued functions, J. Math. Appl. 12 (1965)1-12.
- [3] L. M. Campos and M. J. Bolauos, Characterization and comparision of Sugeno and Choquet integrals, Fuzzy Sets and Systems 52 (1992) 61-67.
- [4] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multi. Analysis 7(1977) 149-182.
- [5] L. C. Jang, B. M. Kil, Y. K. Kim and J. S. Kwon, Some properties of Choquet integrals of set-valued functions, Fuzzy Sets and Systems 91 (1997) 95-98.
- [6] L. C. Jang and J. S. Kwon, On the representation of Choquet integrals of set-valued functions and null sets, Fuzzy Sets and Systems 112(2000)233-239.
- [7] L. C. Jang and T. Kim, On setvalued Choquet intgerals and convergence theorems (I), submitted to Fuzzy Sets and Systems.
- [8] L. C. Jang and T. Kim, Convexity and additivity of set-valued Choquet intgerals, submitted to Fuzzy Sets and Systems.
- [9] T. Murofushi, M. Sugeno and M. Suzaki, Autocontinuity, convergence in measure, and convergence in distribution, Fuzzy Sets and Systems 92 (1997) 197-203.