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Abstract
This paper concerns a design methodology of the observer-based output-feedback
digital controller for Takagi-Sugeno (TS) fuzzy systems using intelligent digital redesign
(IDR). The term of IDR involves converting an analog fuzzy-mode-based controller into
an equivalent digital one in the sense of state-matching. The considered IDR problem is
viewed as convex minimization problems of the norm distances between linear operators
to be matched. The stability condition is easily embedded and the separations principle is

explicitly shown.

1. Introduction

The control of engineering systems often evolves a
continuous-time plant controlled by feeding sampled
measurements back with analog-to-digital (A/D)
and digital-to-analog (D/A) devices for interfacing.
Recent advancements in digital microprocessor
technolpogy have rendered considerable merit to
digital control systems exhibiting inexpensiveness
and flexibility in implementation of complex control
algorithms. To fully enjoy the advantage of the
digital technology in control engineering, various
digital control techniques have been developed. Yet
another efficient approach is, so-called digital
redesign (DR) [2,3,5-71, to  convert the
well-designed analog controller into the equivalent
digital one maintaining the properties of the original
analogously controlled systemn, by which the benefits
of both the analog controller and the advanced
digital technology can be achieved.

It is noted that these digital redesign schemes
basically work only for a class of linear systems.
For that reason, it has been highly demanded to
develop some intelligent digital redesign
methodology for complex nonlinear systems, in
which the first attempt was made by Joo et al [2].
They synergistically merged both the
Takagi-Sugeno (TS) fuzzy-model-based control and
the digital redesign technique for a class of
nonlinear systems. Chang et al extended the
intelligent digital redesign to uncertain TS fuzzy

systems [3] and elaborated it [4]. However, until
now, no tractable method for IDR tackling on the
observer-based output-feedback TS control system
has been proposed. They remain yet to be
theoretically challenging issues in IDR and thereby
must be fully tackled.

Motivated by the above observations, this paper
aims at developing IDR for the observer-based
output-feedback TS fuzzy control system. To
resolve the problems above stated, we propose an
alternative way-convex optimization-based IDR. It
has recently been noticed that many control
problems can be efficiently solved by formulating in
terms of linear matrix inequalities (LMIs). Casting
IDR into an LMI format is also highly desirable,
since the flexibility of LMIs allows one to
characterize the matching condition for the state
estimation error and the stability condition of the
redesigned system by LMI format, as well as the
state-matching condition. The main contribution of
this paper is to derive sufficient conditions of IDR
in terms of ILMIs. The stability condition is
naturally incorporated with ease. The separation
principle is also explicitly shown.

The rest of this paper is organized as follows:
Section 2 briefly reviews TS fuzzy systems both
continuous and discrete-time cases. In Section 3, a
new IDR method is proposed for observer-based
output-feedback TS fuzzy control systems. This
paper concludes with Section 4.
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2. Preliminaries

Consider a TS fuzzy system in which the #th rule

is formulated in the following form:
RuIf z(® is about I'} ... z,(D is about I'}

xt) =AxD+BuJld)
vyt =Cx (D

x{He R" is

u{d)e R™ is the control input vector. The

Then (1)

where the state vector,

subscript ‘c’ means the analog control, while the
subscript ‘d’ will denotes the digital control in the

sequel. R? denotes the ith fuzzy inference rule,
z4( is the premise variable, ri e Io he Iy
is the fuzzy set of the #Ath premise variable in the
ith fuzzy inference rule. Using the center-average
defuzzification, product inference, and singleton
fuzzifier, the global dynamics of this TS fuzzy

system (1) is described by
£ D= 20 LD) (A3 LD+B D)
y)=Cx (B

(2
3

w (2(D) = ,I:[ll"i‘(zh(t))

in which

0.2(0)= w2(0)] 2w (D) and I'"™(2,(D)

is the membership value of the
variable z (eI,

Throughout this paper, a well-constructed
continuous—-time observer-based fuzzy-model-based
control law is assumed to be pre-designed, which
will be used in redesigning the digital control law.
In real control problems, we cannot always observe

hth premise

all the states of a system. Hence a
fuzzy-model-based observer is introduced as
follows:
R% If z,(9 is about I'i... z ,(§) is about '}

Then

FD=A T (D+Bau)+LUy (D= 3.
The defuzzified output of the observer rules is
represented by

FdD= 20200 (A TLD+Bu D
+ LUy (D= 7AD))
The controller rule is of the following form:
Rt z,(#) is about I'i... z ,(#) is about I'}
Then u (D=K.%x.(

The defuzzified output of the controller rules is
given by

u )= 26 (ANKLTAD

Let the estimation error e () =x () — % P
then we obtain the augmented continuous-time

6)

(6

(7
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closed-loop TS fuzzy system is

ACEDIPHIEOTREOLFEC
where

¢1}'=[A 1+(‘)BIK]C

(8)

L.C
for the pair (Z,7) Iox Iy, where
2D=[ 7D T eD 7]

3. Main Results

This subsection discusses the discretization of the
hybrid TS fuzzy system. Consider the digitally
controlled TS fuzzy systems and the discrete TS
fuzzy observer governed by

FAD = 230L2(DNA x A)+B u L)
x AT+ T)
= 310 (=(kT)) (G, TART)
+Hu () + Loy (kD) — Y £kT)) .
where G ;= exp(A ;T)and H,=(G,~DA'Band

u {)=u,(kT) is the piecewise-constant control

(9)

(10

input vector to be determined, in the time interval
[T, T+ Dand T>0 is a sampling period. For
the digital control of the continuous-time TS fuzzy
system, the digital fuzzy-model-based controller is
employed. Let the fuzzy rule of the digital control
law for the system (9) take the following form:

RYIf z,() is about I'}.. 2 ,(#) is about I'}
Then uA)=K5x AT+ 7]y kT (11)

for te[kT,kT+ Twhere K4 and J; is the digital
control gain matrix to be redesigned for the ith
rule, and the overall control law is given by

udd= fé“lei<z<kn><1<:;?d<kﬂ+7,-yd<kﬂ> (12)

for te[kT,kT+ T)

The objective is to find gain matrices for digital
controller and observers in (12) and (10) from the
analog gain matrices in (7) and (5), so that the
closed-loop state x 48 in (9) with (12) can closely

match the closed-loop state x.(# in (8) at all

sampling time instants ¢=kT ke Z*. Thus it is
more convenient to convert the TS fuzzy system
into discrete-time version for derivation of the state
matching condition.

There are several methods for discretizing a linear
time-invariant (LTI) continuous-time  system.
Unfortunately, these discretization methods cannot
be directly applied to the discretization of the
continuous-time TS fuzzy system since the
defuzzifed output of the TS fuzzy system is not
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LTI but implicitly time-varying [1]. Moreover, it is
further desired to maintain the polytopic structure of
the discretized TS fuzzy system for the construction
of the digital fuzzy-model-based controller. Thus
we need ‘a mathematical foundation for the
discretization of the continuous-time TS fuzzy
system.

Assumption '1: Assume that the firing strength of

the ith rule, 8,(z(#) is approximated by their
values - at time. kT, © that is,
0 (2(D) =8 (2(kT)) for e[ kT, kT+ T)

Consequentlyj, the nonlinear matrices g:lﬁ(z( HA ;
and 2‘0(2( H)B; can be approximated as constant

matrices

ga(z(kﬂ)A . and gla(dm)Bi

respectively, over any interval [£T, AT+ T)

If a sufficiently small sampling period 7 is chosen,
Assumption 1 is reasonable.

Theorem 1: The pointwise dynamical behavior of
the TS fuzzy system (9) can be efficiently
approximated by .

% AT+ D)~ 2 02(RTG x LT)+ H i {KT))

. (13)
Proof: See the reference [1].

Remark 1: The discretized TS fuzzy system (13)
contains the discretization error with the order of

O(T?), which is tolerable under the choice of a
sufficiently small sampling period, and vanishes as
T approaches zero. Notice that the error induced in
this discretization procedure is smaller than the
first-order truncated Tayvlor series expansion of (9)

Let the error be e kT)=x 4(kT)— x {kT)Then
the closed-loop of the augmented system the
discretized version of the closed-loop system with
(13), (10) and (12) is constructed to yield

1ART+T) = 35 300 (2(KT)O (2(KD) 1 (2(KT))
[Gi+HiK{;+Hi]jC LiC
0 G,—L,C
(14)
where x A7) T=[ TARD T, e LD T] T

Corollary 1: The pointwise dynamical behavior of
the continuous-time closed-loop TS fuzzy system
(8) can also be approximately discretized as

HRT+ T~ 3 330 (2(kT6 (2T s (kT)

201

(15)
where
A;+B,Ki Li.C
@i,:_ 1 H c ™ T
= P 0 A,-—LLC])
i ey
[¢%} ¥
for (i, Igx I, where

2D =[ TAkD) T, e (kD T} T
Proof: It can be straightforwardly proved by
Theorem 1.

If there exist symmetric positive
Q,, @, matrices F; O;N,

M ; with appropriate dimensions, and possibly small

Theorem 2:
definite matrices

positive scalars y; and 7, such that the following

two generalized eigenvalue problems (GEVPs) have
solutions

GEVP 1:

le]i‘n.i%zz-eMi ¥y, subject to

: ~71@, * <o ae

¢};Q1_Gin_HiF--H;OjC =71

9 2 ’

| 67QI+HF; =71

. -Q, *

| GQ,+H;F;+H;0,C _QI]<0 e
CQ,—MC=0 19
GEVP 2:

m@z’r;ir;lvl%e vy subject to

—79Q, * 1¢o (20)
[ (%) 7Q;—GTQ,+C'™N" —721]
-Q *
GfTQz—CZTNT’ —Qz]<0 .

then, the state x{%£7) of the discretized version
(13) of the controlled system via the redesigned
digital fuzzy-mode-based controller (12) closely
matches the state x (kT) of the discretized version
of the analogously controlled system (15).
Furthermore, the discretized system (13) is
asymptotically stabilizable in the sense of Lyapunov
stability criterion, where star denotes the transposed

7zlement in symmetric positions.

roof: The proof is omitted due to lack of space.

Remark 2: It is important to address that, since the
searching variables @,, F; O; M; for the
digital controller in GEVP 1 and @5, N; for the
discrete observer in GEVP 2 of Theorem 2 are not
coupled, the IDR for the digital controller (12) and
the discrete observer (10) can be performed

independently, which indicates that the separation
principle holds for IDR of the observer-based
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output-feedback fuzz-model-based controller.

Remark 3: The GEVP 1 in Theorem 2 is efficiently
solved via semidefinite programming or LMI Control
Toolbox by converting the LME (19) into
—el * <0
CQ 1= MC —e I

where €=(0)0 is very small constant.

(22)

When C=Iand x4= xy J; and L% in Theorem
2 are redundant and the IDR problem is reduced to
state-feedback case.

Corollary 2: If there exist a symmetric positive
definite matrix &,;, a matrix F; and a scalar

7120 such that the following GEVP is solved

minimize

Q. F 1 Subject to
[ L TN *]]<0 23)
¢, — G F,+H,F; —7,
- @ *
[Gin—HiF, _Q1]<0 (24)
then the digital controller becomes

u =K gx AkT) for all t=[kT,kT+ T) where

F;=KL1Q, denotes the transposed elements in

the symmetric positions, and the digital static
state-feedback gain matrices K f, are given by
Ki=F Q' (25)

Proof: It can be easily proven from Theorem 2.

4. Conclusion

In this paper, a new IDR has been proposed for the
observer-based output-feedback fuzzy-model-based
controller. The developed technique formulated the
given IDR problem as constrained convex
optimization problems so that the powerful and
flexible numerical algorithms can be utilized. The
flexibility of the LMIs enables one to incorporate
the stability of the redesigned system into the IDR
algorithm. The separation principle was clearly
shown. The future work will be devoted -to IDR for
general TS fuzzy systems.
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