Personalized I-Mail Classification System Using Dynamic Thesaurus and Genetic Algorithm

동적 시소러스와 GA을 이용한 개별화된 E-Mail1 분류시스템 (PECS)

  • 안희국 (강원대학교 컴퓨터과학과) ;
  • 노희영 (강원대학교 컴퓨터과학과)
  • Published : 2002.04.01

Abstract

본 논문에서는 전자메일을 사용자 적합도(선호도)를 기준으로 분류하기 위한 구조를 제안한다. 분류는 1차 분류와 2차 분류로 나눠지는데, 1차 분류에서는 사용자 적합도를 판단하기 위해 사용자 관련 정보로부터 동적 시소러스를 구축하고, 구축된 시소러스와의 비교를 통해 사용자에게 유용한 메일인지 아닌지를 결정하고, 2차 분류에서는 사용자가 지정한 폴더키워드를 중심으로 사용자 시소러스로부터 유전자 알고리즘을 이용해 추출한 키워드들과의 적합도 비교를 통해서 특정 폴더로의 분류가 이뤄지게 된다 테스트에는 메일 정보값(Mail Information Word)을 추출하기 위해 HAM(Hangup Analysys Module)을 포함하는 메일정보추줄 에이전트를 사용하였고, mail의 subject와 본문(body)로부터 추출된 16개의 word정보와 시소러스 적합도 정보, 분류 적합도 정보를 하나의 데이터구조로 사용하였다. 이러한 통할된 시스템 구조와 data structure를 이용해 mail을 사용자의 선호도에 따라. 1차와 2차에 걸친 분류시 분류가 사용자 선호도에 근접하게 이루어 질 수 있음을 확인하였다.

Keywords