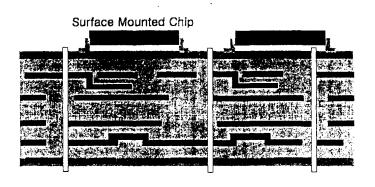
Embedded Passives in Laminated PCB(Organic)

MAR, 2002

R&D Center SIMMTECH Co., Ltd.

R&D Center


MAR, 2002

PCB Solutions for Semiconductor Integration

What is Embedded Passives?

Embedded passives: passive component placed in PCB

: Singulated Embedded Capacitor

: Singulated Embedded Resistor

Major passive component in electronic circuit

: Capacitor, Resistor, Inductor...

Ratio of Discrete Passive Compnent and IC number inside

Portable Electronic Application → About 15:1 ~ 30:1

- ☐ 30% of Solder Joint
- ☐ 40% of Board Surface Area
- □ 90% of Component Placement

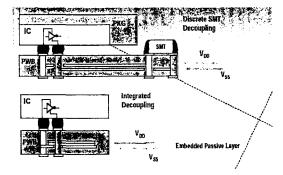
System	Passives	IC	Ratio
Motorola StarTAC Cellular Phone	993	45	22:1
NTT DoCoMo Cellular Phone	492	30	16:1
Casio QV10 Digital Camera	489	17	29:1
Sony Handy Cam DCR-PC7	1329	43	31:1

R&D Center

MAR, 2002

PCB Solutions for Semiconductor Integration

Nomber of Passive Components


	Motherboard:	486	Pentium 120	Pentium 200 MMX	Pentium II 333MHz	Pentium III
Capacitors	Leaded MLC	58			•	•
	SMT MLC	•	151	190	300	600
	Cap Arrays (4)	•	•	32	140	200
	Leaded Tantalum	15	1	•	•	•
	SMT Tantalum		•	•	37	80
	Aluminum	•	7	32	11	15
	Feedthrough	•	•	3	•	•
	Disks				4	
Total capacitors		73	159	257	485	895
Resistors	Leaded Resistors	92	•	•	•	•
	SMT Resistors	•	146	188	635	1,000
	Resistors Arrays (2)	•	•	•	10	
	Resistors Arrays (4)	•	64	148	336	300
Total resistors		92	210	336	981	1,300
Total passives		165	369	593	1,473	2,195

Number and type of passive component in PC Motherboards

Why Embedded(Advantages)

- ▶ Minimum 5% of the Surface Area can be saved
 - Board Size Reduction
- ▶ The cost of conversion to place
 SMT components can be reduced
 ☞ Cost Reduction

- ► The parasitics should be reduced or eliminated(surface mount resistor and capacitors have inherent parasitic functionalities)

 □ Improved Electrical Performance
- Improved wireability, higher reliability, reduction in part numbers, higher throughput in manufacturing assembly and increased yield in manufacturing assembly
 Improve Productivity

R&D Center

MAR, 2002

PCB Solutions for Semiconductor Integration

Disadvantages(Barriers)

- Risk associated with new technologies
- Reduced design flexibility
- Cannot provide wide range of resistor values
- Cannot provide tight absolute tolerances
 (tolerances of 10-20% compared to 1% for discrete components)
- Sometimes unstable to hold their values over time and temperature
- Perceptiopn that embedded passives is a higher cost solution

R&D Center

MAR, 2002

S DAM TISCH

Capacitor

The capacitor is a device for storing electric energy

Material

Paraelectrics: Low Dielectric constant (Dk < 100)

Organic base system (FR-4, Epoxy)

Very stable with respect to frequency and normal temp range

Variation in properties when high humidity

Ferrroelectric: High Dielectric constant (Dk > 1000)

Barium titanate, glass ceramic

Very stable to environmental condition

Variation in properties with regard to frequency

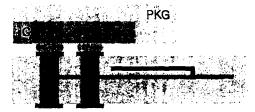
Application (capacitor value : 1pF ~ 1µF)

Lower value: filtering, timing, A/D functions - tight tolerance, high stability

Upper value: Decoupling, energy storage - loose tolerance


R&D Center

MAR, 2002



PCB Solutions for Semiconductor Integration

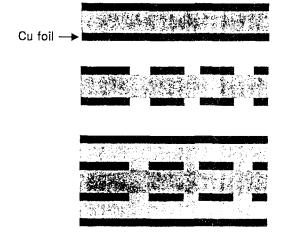
Decoupling Capacitor

Embedded Decoupling

High frequency and parasitic inductance induce Switching noise Switching noise is origin of system delay and EMI

Decoupling Capacitors → decreasing switching noise

Requirement of decoupling capacitors


- > high frequency properties
- ▶ high capacitance
- ▶ closer distance with Chip

Organic Laminates type

- Dielectric material: FR-4 epoxy, Barium titanate filled polyimide or epoxy

- Electrode material : Copper foil

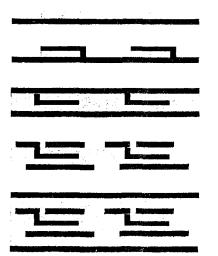
Process

- ◀ Laminate capacitor
- capacitor formed by etching process
- ◆ Continue to build PCB using standard process

R&D Center

MAR, 2002

PCB Solutions for Semiconductor Integration


Screen Printable Type E/C

Screen Printable type

- Dielectric material: Barium titanate or glass ceramic dispersed in polymer

- Electrode material : Copper foil, Silver paste

Process

- Screen printing and curing
- ◄ Electrode paste printing
- ◀ Laminate to FR-4 core
- ◀ Singulated
 by patterning process
- Continue to build PCB using standard process

R&D Center

MAR, 2002

S DALI TECH

Embedded Capacitor Materials

	Organic Laminates			Screen Printable Composition	
Maker	Sanmina	DuPont	3M	DuPont	Sanmina
Trademark	BC-2000	Hik	C-Pły		EmCap
Materials	FR-4 Impregnated With BaTiO ₃ in epoxy resin	BaTiO₃ in Polyimide Cast on Copper foil	BaTiO ₃ Dispersed In epoxy resin	Glass powder and BaTi (Ferroelectric) in Polymer	BaTiO ₃ Dispersed In epoxy resin
Dielectric Const. (1GHz)	4	12~20	22		36
Capacitance	0.5 nF/in ²	1.5 nF/in ²	10~30 nF/in²	100 ~ 180 nF/in ²	2.1 nF/in ²
Thickness	50 µm	8~25 µm	5 ~ 25 µm	50 ~ 70 µm	100 Am
Loss tangent % (1GHz)	0.021	0.01	0.10		0.06
Remark	Commercially available technology Tolerance: ± 0.015 nF	More process than Laminate film type Low breakdown Voltage	High capacitive Density Low breakdown Voltage	More process than Laminate film type Higher capacitance density * On developing	

R&D Center

MAR, 2002

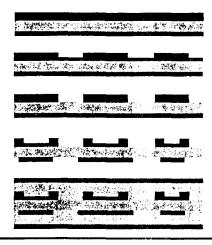
PCB Solutions for Semiconductor Integration

Embedded Resistor

Resistor

Material

- Conductive Carbon/Silver filled polymer pastes, ceramic paste Epoxy/metal resistive composite
- Resistivity value : 1 ~ 1MΩ/ square


Application (resistor value: a few to million Ω)

- Many circuit have low and high value on the same substrate
- Basic transfer Voltage/Current
- Voltage reducer
- Pull up/down in digital circuit...etc

Thin film Laminates type

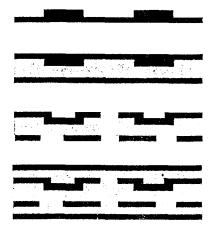
- Trademark product : Omega-Ply
- Cu foil / Resistor/ FR-4 /Cu foil laminate film,
- Resister material : Metal alloy- NiP

Process

- Laminates resistor
- Selective etching copper layer
- Chemically strip resistor film
- Selective etching both copper layer
- Continue to build PCB using standard process

R&D Center

MAR, 2002


PCB Solutions for Semiconductor Integration

Screen Printable Type E/R

Screen Printable type(Inner Layer)

 Material : Conductive Carbon/Silver filled polymer pastes, conductive polyimide, ceramic paste

Process

- Screen printing and curing
- ◀ Laminate to FR-4 core
- ◆ Patterning copper layer
- Continue to build PCB using standard process

R&D Center

MAR. 2002

SDAN TECH

$$R = P \times \frac{L}{W \times \frac{Tn}{Tp}}$$

P = Ink Resistance

L = Distance between Copper Pad on the Resistor Printed

W = Printed Resistor Width

Tn = Nominal Printed Thickness(Cured)

Tp = Printed Thickness(Wet Film)

R&D Center

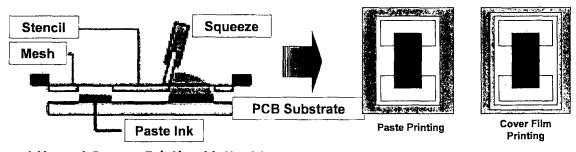
MAR, 2002

PCB Solutions for Semiconductor Integration

Key Factor

Distance between Copper Contacts(Conductor Space)

Area of Resistor Paste(Ink)


Thickness & Width of Resistor Paste(Ink)

Cure Temp. & Time

R&D Center

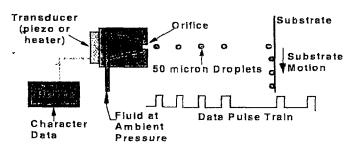
MAR, 2002

SDALTECH"

< Normal Screen Printing Method >

R&D Center

MAR, 2002



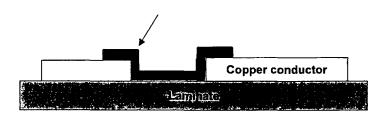
PCB Solutions for Semiconductor Integration

Ink-Jet Printing(Microfab)

Technology

Drop-on-Demand Ink-Jet Printing

- Polymeric resistor
- Fluid viscosity, dispensing temp., number & size of dispensed droplets


R&D Center

MAR, 2002

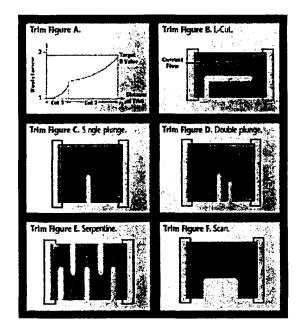
ETHN TECH

Technology

Plated Electroless Additive Resistor

- Electroless plating
- Use relatively standard Plating processes and substitutes

R&D Center


MAR, 2002

PCB Solutions for Semiconductor Integration

Embedded Resistor Materials

	Screen Printable type				Thin film Laminates type	
Maker	Electra Polymer & Chemical Ltd.	Ormet	DuPont	DuPont	Omega-Ply	
Materials	Conductive Carbon/Silver filled polymer pastes	Epoxy/metal resistive composite	LaB ₆ based film (ceramic paste)	Conductive Polyimide -blend material	Resistor/conductor laminate film (Metal alloy- NiP)	
Resistance	1~ 1MΩ/square	10 ~ 150Ω/square	10~ 10kΩ/square	10 ~ 1MΩ/square	25, 50, 100, 250 Ω/square	
Remark	Disadvantage: low resistivity Limited use under High temp/humidity	TCR < 300 ppm Tolerance < 20 % Low temp curing (200 c) * On developing	TCR < 150 ppm Stability of thermal cycling and aging is excellent * On developing		TCR = 50 ~100 ppm Tolerance : ± 10 %	

Statistical Parameter	R1	R2
N =	1137	1137
Target =	70.0 Ω	3900.0 ♀
Average Initial Value =	57.2 Ω	3346 ♀
Average Funal Value =	70.1 Ω	3888.8 ♀
Initial Error =	18.3 %	14.2%
Final Error =	0.19 %	-0.29 %
Final 3 σ =	0.3 %	0.2 %
Final Cpk 1 % =	2.416	3.045
Final Cpk 1 % =	14.338	20.164

Table: Pre-Test and Post-Trim Data for Carbon Loaded Poly Epoxy Thick Film Resistors.

R&D Center

MAR, 2002

PCB Solutions for Semiconductor Integration

Future of Embedded Passives

Area of concern	2000	2003	2005 ~
Material	Demonstrable	Acceptable properties	
Manufacturing	Low yield	Acceptable Yield	Cost-effective Infrastructure
Design & test	Demonstrable		Widespread Common price
Cost	High	Competitive	Cost saving
Available	Few Supplies No standard	Available from A few sources	Standard parts available From multiple sources